a) Tìm các số nguyên \(x,\,\,y\) thỏa mãn \(4{x^2} + 5{y^2} - 4xy + 2(2x + 3y) + 4 \le 0.\)
b) Cho \(a,\,\,b,\,\,c\) là các số thực khác không thỏa mãn \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0.\)
Chứng minh rằng \(\frac{1}{{{a^2} + 2bc}} + \frac{1}{{{b^2} + 2ca}} + \frac{1}{{{c^2} + 2ab}} = 0.\)
a) Tìm các số nguyên \(x,\,\,y\) thỏa mãn \(4{x^2} + 5{y^2} - 4xy + 2(2x + 3y) + 4 \le 0.\)
b) Cho \(a,\,\,b,\,\,c\) là các số thực khác không thỏa mãn \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0.\)
Chứng minh rằng \(\frac{1}{{{a^2} + 2bc}} + \frac{1}{{{b^2} + 2ca}} + \frac{1}{{{c^2} + 2ab}} = 0.\)
Quảng cáo
Trả lời:
Ta có \(4{x^2} + 5{y^2} - 4xy + 2(2x + 3y) + 4 \le 0 \Leftrightarrow {(2x - y + 1)^2} + 4{(y + 1)^2} \le 1\)
\( \Leftrightarrow \left[ \begin{array}{l}{(2x - y + 1)^2} + 4{(y + 1)^2} = 1\\{(2x - y + 1)^2} + 4{(y + 1)^2} = 0\end{array} \right.\)
TH1: \({(2x - y + 1)^2} + 4{(y + 1)^2} = 0 \Leftrightarrow \left\{ \begin{array}{l}2x - y + 1 = 0\\y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = - 1\end{array} \right.\) .
TH2: \({(2x - y + 1)^2} + 4{(y + 1)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}2x - y + 1 = 0\\4{(y + 1)^2} = 1\end{array} \right.\,\,(vn)\\\left\{ \begin{array}{l}{(2x - y + 1)^2} = 1\\y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{(2x + 2)^2} = 1\\y = - 1\end{array} \right.\,\,(vn).\end{array} \right.\)
Vậy có đúng một cặp số thỏa mãn (x; y) = (-1; -1).
\(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0 \Leftrightarrow ab + bc + ca = 0\)
Ta có : \({a^2} + 2bc = {a^2} + bc + ( - ab - ca) = (a - b)(a - c).\)
Tương tự có : \({b^2} + 2ca = (b - c)(b - a);\,\,\,{c^2} + 2ab = (c - a)(c - b).\,\,\,\)
\(\frac{1}{{{a^2} + 2bc}} + \frac{1}{{{b^2} + 2ca}} + \frac{1}{{{c^2} + 2ab}} = \frac{1}{{(a - b)(a - c)}} + \frac{1}{{(b - c)(b - a)}} + \frac{1}{{(c - a)(c - b)}}\)
\( = \frac{1}{{(a - b)(a - c)}} - \frac{1}{{(b - c)(a - b)}} + \frac{1}{{(a - c)(b - c)}} = \frac{{b - c - (a - c) + a - b}}{{(a - b)(b - c)(a - c)}} = 0\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta sử dụng các bất đẳng thức \(\frac{1}{m} + \frac{1}{n} \ge \frac{4}{{m + n}} \ge \frac{{2\sqrt 2 }}{{\sqrt {{m^2} + {n^2}} }}\) với \(m > 0;n > 0\)
Dấu bằng xảy ra khi \(m = n\)
\(P = \frac{1}{{a - b}} + \frac{1}{{b - c}} + \frac{1}{{a - c}} + \frac{5}{{2\sqrt {ab + bc + ca} }}\)
\(P \ge \frac{4}{{a - c}} + \frac{1}{{a - c}} + \frac{5}{{2\sqrt {ab + bc + ca} }} = \frac{5}{{a - c}} + \frac{5}{{2\sqrt {ab + bc + ca} }}\)
Lại có: \(\frac{5}{{a - c}} + \frac{5}{{2\sqrt {ab + bc + ca} }} \ge 5\frac{{2\sqrt 2 }}{{\sqrt {{{(a - c)}^2} + 4(ab + bc + ca)} }} = \frac{{10\sqrt 2 }}{{\sqrt {{{(a + c)}^2} + 4b(a + c)} }}\)
\( \Rightarrow P \ge \frac{{10\sqrt 2 }}{{\sqrt {(a + c)(a + c + 4b)} }} = \frac{{10\sqrt 2 }}{{\sqrt {(1 - b)(1 + 3b)} }}\,\,\,\,\left( {do\,\,a + c = 1 - b} \right)\)
\( \Rightarrow P \ge \frac{{10\sqrt 6 }}{{\sqrt {\left( {3 - 3b} \right)\left( {1 + 3b} \right)} }} \ge \frac{{10\sqrt 6 }}{{\frac{{3 - 3b + 1 + 3b}}{2}}} = 5\sqrt 6 \)
Giá trị nhỏ nhất của P bằng \(5\sqrt 6 \) khi
\(\left\{ \begin{array}{l}a > b > c\\a + b + c = 1\\a - b = b - c\\a - c = 2\sqrt {b(a + c) + ca} \\3 - 3b = 1 + 3b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a > b > c\\b = \frac{1}{3}\\a + c = \frac{2}{3}\\a - c = 2\sqrt {\frac{2}{9} + ca} \end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{{2 + \sqrt 6 }}{6}\\b = \frac{1}{3}\\c = \frac{{2 - \sqrt 6 }}{6}\end{array} \right.\)
Lời giải

a) Ta có \(ME.MB = M{A^2}\) do \(\Delta MAB\) vuông tại A có đường cao AE.
Lại có \(MH.MO = M{A^2}\) do \(\Delta MAO\) vuông tại A có đường cao AH.
\( \Rightarrow ME.MB = MH.MO\)
\( \Rightarrow \frac{{ME}}{{MH}} = \frac{{MO}}{{MB}}\)\[ \Rightarrow \Delta OME \sim \Delta BMH\]

b) Ta có\(MA = MC,\,\,OA = OC\) suy ra đường thẳng \(MO\)là trung trực đoạn thẳng \(AC\)nên \(MO \bot AC\). Kéo dài \(BC\) cắt \(AM\) tại \(P\) nên \(MO//PB\)\( \Rightarrow M\) trung điểm \(AP.\)
Ta có \(\frac{{IC}}{{MP}} = \frac{{BI}}{{BM}}\) và \(\frac{{IK}}{{MA}} = \frac{{BI}}{{BM}}\)\( \Rightarrow \frac{{IC}}{{MP}} = \frac{{IK}}{{MA}} \Rightarrow IC = IK\)
Suy ra \(I\) trung điểm của đoạn thẳng \(CK\).
\( \Rightarrow {S_{\Delta ACI}} = \frac{1}{2}{S_{\Delta ACK}};{S_{\Delta BCI}} = \frac{1}{2}{S_{\Delta BCK}}\,\, \Rightarrow {S_{\Delta AIC}} + {S_{\Delta BCI}} = \frac{1}{2}{S_{\Delta ABC}}\, = \frac{1}{4}CK.AB\)
Do đoạn thẳng \(AB\)không đổi nên tổng diện tích hai tam giác \(IAC\) và \(IBC\)lớn nhất. lớn nhất khi \(C\) điểm chính giữa hay \(K\) trùng tâm \(O.\)
Khi đó tứ giác\(AOCM\) là hình vuông.
\( \Rightarrow \frac{{FI}}{{FM}} = \frac{{IC}}{{AM}} = \frac{1}{2} \Rightarrow FI = \frac{1}{3}IM = \frac{1}{6}BM.\) Lại có \(B{M^2} = A{B^2} + M{A^2} = \frac{{5A{B^2}}}{4}\)
\( \Rightarrow BM = \frac{{AB\sqrt 5 }}{2} \Rightarrow \frac{{FI}}{{AB}} = \frac{1}{6}.\frac{{\frac{{AB\sqrt 5 }}{2}}}{{AB}} = \frac{{\sqrt 5 }}{{12}}.\)

.c) Ta có
\[\Delta MEC \sim \Delta MCB \Rightarrow \frac{{ME}}{{MC}} = \frac{{CE}}{{CB}}\]
\[\Delta MEA \sim \Delta MAB \Rightarrow \frac{{MA}}{{MB}} = \frac{{EA}}{{AB}}\]
\[ \Rightarrow \frac{{ME}}{{MC}}.\frac{{MA}}{{MB}} = \frac{{CE}}{{CB}}.\frac{{EA}}{{AB}} \Rightarrow \frac{{ME}}{{MB}} = \frac{{CE}}{{CB}}.\frac{{AE}}{{AB}}\,\,(1).\]
.Mặt khác
\[\Delta FEC \sim \Delta FAB \Rightarrow \frac{{FE}}{{FA}} = \frac{{CE}}{{AB}}\]
\[\Delta FAE \sim \Delta FBC \Rightarrow \frac{{FA}}{{FB}} = \frac{{AE}}{{BC}}\]
\[ \Rightarrow \frac{{FE}}{{FA}}.\frac{{FA}}{{FB}} = \frac{{CE}}{{AB}}.\frac{{EA}}{{CB}} \Rightarrow \frac{{FE}}{{FB}} = \frac{{CE}}{{CB}}.\frac{{AE}}{{AB}}\,\,(2).\]
Từ (1) và (2) \[ \Rightarrow \frac{{ME}}{{MB}} = \frac{{FE}}{{FB}}\,\,\]
\[ \Rightarrow \frac{{MB - EB}}{{MB}} = \frac{{EB - FB}}{{FB}}\,\, \Rightarrow 1 - \frac{{EB}}{{MB}} = \frac{{EB}}{{FB}} - 1 \Rightarrow 2 = \,\frac{{EB}}{{MB}} + \frac{{EB}}{{FB}}\]
\[ \Rightarrow 2 = EB\left( {\frac{1}{{MB}} + \frac{1}{{FB}}} \right) \Rightarrow \frac{1}{{BM}} + \frac{1}{{BF}} = \frac{2}{{BE}}\] (ĐPCM).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.