Câu hỏi:

23/12/2025 41 Lưu

Một căn bệnh có 1% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỉ lệ chính xác là 99%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu? (nhập đáp án vào ô trống)

Đáp án:  ____

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 1/2

Đáp án đúng là "1/2"

Phương pháp giải

Công thức Bayes

Lời giải

Gọi \(A\): "Người đó mắc bệnh"

\(B\): "Kết quả kiểm tra người đó là dương tính (bị bệnh)"

Xác suất để người đó mắc bệnh khi chưa kiểm tra: \(P\left( A \right) = 1{\rm{\% }} = 0,01\)

Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: \(P\left( {\overline A } \right) = 1 - 0,01 = 0,99\)

Xác suất kết quả dương tính nếu người đó mắc bệnh là: \(P\left( {B\mid A} \right) = 99{\rm{\% }} = 0,99\)

Xác suất kết quả dương tính nếu người đó không mắc bệnh là: \(P\left( {B\mid \overline A } \right) = 1 - 0,99 = 0,01\)

\(P\left( {A\mid B} \right) = \frac{{P\left( A \right).P\left( {B\mid A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\mid \overline A } \right)}}\)\( = \frac{{0,01.0,99}}{{0,01.0,99 + 0,99.0,01}} = \frac{1}{2}\)

Xác suất để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là \(\frac{1}{2}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 168

Đáp án đúng là "168"

Phương pháp giải

Ứng dụng tích phân

Lời giải

Quãng đường ô tô đi được từ lúc lăn bánh đến khi được phanh:

Vận tốc \({v_2}\left( t \right)\left( {m/s} \right)\) của ô tô từ lúc được phanh đến khi dừng hẳn thỏa mãn:

\({v_2}\left( t \right) = \mathop \smallint \nolimits^  - 12dt =  - 12t + C\),

\({v_2}\left( {12} \right) = {v_1}\left( {12} \right) = 24 \Rightarrow C = 168 \Rightarrow {v_2}\left( t \right) =  - 12t + 168\left( {{\rm{m}}/{\rm{s}}} \right)\)

Thời điểm xe dừng hẳn tương ứng với thỏa mãn \({v_2}\left( t \right) = 0 \Leftrightarrow t = 14\left( s \right)\)

Quãng đường ô tô đi được từ lúc xe được phanh đến khi dừng hẳn là:

\({s_2} = \int\limits_{12}^{14} {{v_2}\left( t \right)dt}  = \int\limits_{12}^{14} {\left( { - 12t + 168} \right)dt}  = 24m\)

Quãng đường cần tính \(s = {s_1} + {s_2} = 144 + 24 = 168\left( m \right)\)

Lời giải

Đáp án đúng là D

Phương pháp giải

Nhận xét bảng số liệu và công thức tính cán cân xuất nhập khẩu.

Lời giải

- Cán cân xuất nhập khẩu = xuất khẩu – nhập khẩu

+ Nếu cán cân xuất nhập khẩu > 0 => xuất siêu.

+ Nếu cán cân xuất nhập khẩu < 0 => nhập siêu.

=> Nhận xét đúng là: Các quốc gia nhập siêu là Ma-lai-xi-a, Xin-ga-po, Thái Lan vì đây là những quốc gia có giá trị xuất khẩu < giá trị nhập khẩu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. tăng dần từ xích đạo về cực
B. giảm dần từ chí tuyến về hai phía.
C. giảm dần từ xích đạo về cực.        
D. không có sự thay đổi nhiều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Gia đình            
B. Quê hương     
C. Chiến tranh  
D. Tuổi thơ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP