CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Số cách chọn 9 quyển sách bất kì từ 20 quyển sách bằng: \(n\left( \Omega  \right) = C_{20}^9 = 167960\).

Gọi A là biến cố sau khi tặng số sách còn lại của thầy giáo đủ ba môn

Suy ra \(\overline A \) là biến cố sau khi tặng số sách còn lại không đủ cả 3 môn (đồng nghĩa thầy giáo tặng hết một loại sách)

\(n\left( {\overline A } \right) = C_7^7.C_{13}^2 + C_5^5.C_{15}^4 + C_8^8.C_{12}^1 = 1455\).

Vậy \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = 1 - \frac{{1455}}{{167960}} = \frac{{33301}}{{33592}}\).

Lời giải

Hướng dẫn giải

Cho hình chóp S.ABC có SA vuông góc với đáy; SA = a căn bậc hai 3 . Tam giác ABC đều cạnh a. Tính khoảng cách SB và CI với I là trung điểm của AB. (ảnh 1)

Vì \(\Delta ABC\) đều, \(I\) là trung điểm của \(AB\) nên \(CI \bot AB\).

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CI\).

Ta có: \(CI \bot AB\) và \(CI \bot SA\)

\( \Rightarrow CI \bot \left( {SAB} \right)\).
Trong \(\left( {SAB} \right)\) kẻ \(IH \bot SB\) tại \(H\).

Ta có \(\left\{ \begin{array}{l}IH \bot SB\\IH \bot CI{\rm{  }}\left( {CI \bot \left( {SAB} \right)} \right)\end{array} \right. \Rightarrow d\left( {SB;CI} \right) = IH\).

Ta có \(IB = \frac{a}{2};SB = \sqrt {S{A^2} + A{B^2}}  = 2a\).

\(\Delta IHB\) vuông tại \(H\) nên:\(IH = IB.\sin \widehat {IBH} = \frac{a}{2}.\frac{{SA}}{{SB}} = \frac{a}{2}.\frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 a}}{4}\).

Câu 4

A. \[A\] và \[B\]là hai biến cố độc lập.

B. \[A \cap B\] là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”

C. \[A \cup B\]là biến cố “ Ít nhất một lần xuất hiện mặt 6 chấm”

D. \[A\] và \[B\]là hai biến cố xung khắc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai biến cố \[A\]và \[B\] không thể cùng xảy ra.

B.  Hai biến cố \[A\]và \[B\] là hai biến cố độc lập.

C.  Hai biến cố \[A\]và \[B\] là hai biến cố xung khắc.

D. Ta có \[P(A \cup B) = P(A) + P(B) = 0,9\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({x^m}.{x^n} = {x^{m + n}}\).
B. \({\left( {xy} \right)^n} = {x^n}.{y^n}\). 
C. \({\left( {{x^n}} \right)^m} = {x^{nm}}\). 
D. \({x^m}.{y^n} = {\left( {xy} \right)^{m + n}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{\log _a}{a^\alpha } = \alpha \]. 
B. \[{\log _a}1 = 0\]. 
C. \[{\log _a}a = 2a\].  
D. \({\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP