Câu hỏi:

23/12/2025 28 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, cạnh bên \(SA\) vuông góc với mặt phẳng đáy. Góc phẳng nhị diện \(\left[ {S,BC,A} \right]\) là

A. \(\widehat {SBA}\). 
B. \[\widehat {SCA}\].
C. \(\widehat {ASC}\).
D. \(\widehat {ASB}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Góc phẳng nhị diện (S,BC,A) là (ảnh 1)

Vì \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB \Rightarrow BC \bot \left( {SAB} \right)\)\( \Rightarrow BC \bot SB\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SB \bot BC\\AB \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SBA}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hai biến cố \[A\]và \[B\] không thể cùng xảy ra.

B.  Hai biến cố \[A\]và \[B\] là hai biến cố độc lập.

C.  Hai biến cố \[A\]và \[B\] là hai biến cố xung khắc.

D. Ta có \[P(A \cup B) = P(A) + P(B) = 0,9\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Vì \(P\left( A \right).P\left( B \right) = 0,5.0,4 = 0,2 = P\left( {AB} \right)\) nên \[A\]và \[B\] là hai biến cố độc lập.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\[f'\left( 3 \right) = \mathop {\lim }\limits_{x \to 3} \frac{{f(x) - f(3)}}{{x - 3}} = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[A\] và \[B\]là hai biến cố độc lập.

B. \[A \cap B\] là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”

C. \[A \cup B\]là biến cố “ Ít nhất một lần xuất hiện mặt 6 chấm”

D. \[A\] và \[B\]là hai biến cố xung khắc.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP