Cho hình chóp \[S.ABC\] có \[SA\] vuông góc với đáy; \[SA = a\sqrt 3 \]. Tam giác\[ABC\] đều cạnh \[a\]. Tính khoảng cách \[SB\] và \[CI\]với \[I\]là trung điểm của \[AB\].
Cho hình chóp \[S.ABC\] có \[SA\] vuông góc với đáy; \[SA = a\sqrt 3 \]. Tam giác\[ABC\] đều cạnh \[a\]. Tính khoảng cách \[SB\] và \[CI\]với \[I\]là trung điểm của \[AB\].
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì \(\Delta ABC\) đều, \(I\) là trung điểm của \(AB\) nên \(CI \bot AB\).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot CI\).
Ta có: \(CI \bot AB\) và \(CI \bot SA\)
\( \Rightarrow CI \bot \left( {SAB} \right)\).
Trong \(\left( {SAB} \right)\) kẻ \(IH \bot SB\) tại \(H\).
Ta có \(\left\{ \begin{array}{l}IH \bot SB\\IH \bot CI{\rm{ }}\left( {CI \bot \left( {SAB} \right)} \right)\end{array} \right. \Rightarrow d\left( {SB;CI} \right) = IH\).
Ta có \(IB = \frac{a}{2};SB = \sqrt {S{A^2} + A{B^2}} = 2a\).
\(\Delta IHB\) vuông tại \(H\) nên:\(IH = IB.\sin \widehat {IBH} = \frac{a}{2}.\frac{{SA}}{{SB}} = \frac{a}{2}.\frac{{a\sqrt 3 }}{{2a}} = \frac{{\sqrt 3 a}}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hai biến cố \[A\]và \[B\] không thể cùng xảy ra.
B. Hai biến cố \[A\]và \[B\] là hai biến cố độc lập.
C. Hai biến cố \[A\]và \[B\] là hai biến cố xung khắc.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì \(P\left( A \right).P\left( B \right) = 0,5.0,4 = 0,2 = P\left( {AB} \right)\) nên \[A\]và \[B\] là hai biến cố độc lập.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
\[f'\left( 3 \right) = \mathop {\lim }\limits_{x \to 3} \frac{{f(x) - f(3)}}{{x - 3}} = 2\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[A\] và \[B\]là hai biến cố độc lập.
B. \[A \cap B\] là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”
C. \[A \cup B\]là biến cố “ Ít nhất một lần xuất hiện mặt 6 chấm”
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
