Câu hỏi:

24/12/2025 35 Lưu

(2,0 điểm) Cho hai biểu thức: A=x+1x3  B=1x1+xx1.xx2x+1 .

a) Tìm điều kiện xác định của hai biểu thức \(A\)\(B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Xét biểu thức \[A = \frac{{\sqrt x + 1}}{{\sqrt x - 3}}.\]

Điều kiện xác định của biểu thức \(A\)\(x \ge 0,\,\,\sqrt x - 3 \ne 0,\) tức là \(x \ge 0\)\(x \ne 9\).

Xét biểu thức \[B = \left( {\frac{1}{{\sqrt x - 1}} + \frac{{\sqrt x }}{{x - 1}}} \right).\frac{{x - \sqrt x }}{{2\sqrt x + 1}}\].

Điều kiện xác định của biểu thức \(B\)\(x \ge 0,\,\,\sqrt x - 1 \ne 0,\,\,x - 1 \ne 0,\,\,2\sqrt x + 1 \ne 0.\)

Với \(x \ge 0\), ta có: \(\sqrt x - 1 \ne 0\) khi \(x \ne 1;\)

\(x - 1 \ne 0\) khi \(x \ne 1;\)

\(2\sqrt x + 1 > 0\).

Do đó, điều kiện xác định của biểu thức \(B\)\(x \ge 0\)\(x \ne 1.\)

Câu hỏi cùng đoạn

Câu 2:

b) Tính giá trị biểu thức \[A\] khi \[x = \frac{1}{{16}}.\]

Xem lời giải

verified Giải bởi Vietjack

b) Thay \(x = \frac{1}{{16}}\) (thỏa mãn điều kiện) vào biểu thức \(A\), ta có:

\(A = \frac{{\sqrt {\frac{1}{{16}}} + 1}}{{\sqrt {\frac{1}{{16}}} - 3}} = \frac{{\frac{1}{4} + 1}}{{\frac{1}{4} - 3}} = \frac{{\frac{5}{4}}}{{ - \frac{{11}}{4}}} = - \frac{5}{{11}}.\)

Vậy \(A = - \frac{5}{{11}}\) khi \(x = \frac{1}{{16}}\).

Câu 3:

c) Chứng minh rằng \[B = \frac{{\sqrt x }}{{\sqrt x + 1}}\].

Xem lời giải

verified Giải bởi Vietjack

c) Với \(x \ge 0;x \ne 1\), ta có:

\(B = \left( {\frac{1}{{\sqrt x - 1}} + \frac{{\sqrt x }}{{x - 1}}} \right) \cdot \frac{{x - \sqrt x }}{{2\sqrt x + 1}}\)

   \( = \left[ {\frac{{\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right] \cdot \frac{{x - \sqrt x }}{{2\sqrt x + 1}}\)

=2x+1x+1x1xx12x+1 =xx+1.

Vậy với \(x \ge 0;x \ne 1\) thì \(B = \frac{{\sqrt x }}{{\sqrt x + 1}}\).

Câu 4:

d) Tìm các số nguyên tố \[x\] để \[A.B < 1.\]

Xem lời giải

verified Giải bởi Vietjack

d) Với \[x \ge 0;x \ne 9;x \ne 1,\] ta có: \(A.B = \frac{{\sqrt x + 1}}{{\sqrt x - 3}}.\frac{{\sqrt x }}{{\sqrt x + 1}} = \frac{{\sqrt x }}{{\sqrt x - 3}}\).

Khi đó, để \(A.B < 1\) thì \(\frac{{\sqrt x }}{{\sqrt x - 3}} < 1\).

Giải bất phương trình: \(\frac{{\sqrt x }}{{\sqrt x - 3}} < 1\)

\(\frac{{\sqrt x }}{{\sqrt x - 3}} - 1 < 0\)

\(\frac{{\sqrt x }}{{\sqrt x - 3}} - \frac{{\sqrt x - 3}}{{\sqrt x - 3}} < 0\)

\(\frac{3}{{\sqrt x - 3}} < 0\).

Do \(3 > 0\) nên để \(\frac{3}{{\sqrt x - 3}} < 0\) thì \(\sqrt x - 3 < 0\) hay \(\sqrt x < 3\). Suy ra \(x < 9\).

Kết hợp với điều kiện \(x \ge 0;x \ne 9;x \ne 1\) nên \(0 \le x < 9;x \ne 1\).

\(x\) là số nguyên tố nên ta được \(x \in \left\{ {2;\,\,3;\,\,5;\,\,7} \right\}.\)

Vậy các giá trị nguyên tố thỏa mãn \(A.B < 1\)\(x \in \left\{ {2;\,\,3;\,\,5;\,\,7} \right\}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định \(x \ne - 1,x \ne 3\).

Ta có: \(\frac{x}{{2\left( {x - 3} \right)}} + \frac{x}{{2x + 2}} = \frac{{2x}}{{\left( {x + 1} \right)\left( {x - 3} \right)}}\)

\(\frac{{x\left( {x + 1} \right)}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}} + \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}} = \frac{{2x \cdot 2}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}}\)

\(x\left( {x + 1} \right) + x\left( {x - 3} \right) = 2x \cdot 2\)

\({x^2} + x + {x^2} - 3x - 4x = 0\)

\(2{x^2} - 6x = 0\)

\(2x\left( {x - 3} \right) = 0\)

\(x = 0\) hoặc \(x - 3 = 0\).

\(x = 0\) (thỏa mãn) hoặc \(x = 3\) (loại).

Vậy phương trình có nghiệm là \(x = 0\).

Lời giải

a) \[A,M,C,K\] cùng thuộc một đường tròn. (ảnh 1)

a) Ta có: \[\widehat {AMB} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn). Suy ra \[\widehat {AMC} = 90^\circ \] (cùng bù với \[\widehat {AMB}\]).

Gọi \[E\] là trung điểm của \[CA\].

Xét \[\Delta AMC\] vuông tại \[M\]\[ME\] là đường trung tuyến ứng với cạnh huyền \[CA\] nên \[ME = \frac{1}{2}CA.\]

Xét \[\Delta AKC\] vuông tại \[K\]\[KE\] là đường trung tuyến ứng với cạnh huyền \[CA\] nên \[KE = \frac{1}{2}CA.\]

Do đó, \[KE = ME = EC = EA = \frac{1}{2}CA\] nên bốn điểm \[A,M,C,K\] cùng thuộc một đường tròn tâm \[E\] đường kính \[CA\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP