Câu hỏi:

24/12/2025 28 Lưu

(2,0 điểm) Cho hai biểu thức A=x2x+7  B=xx412x+1x+2 .

a) Tìm điều kiện xác định của hai biểu thức \(A\)\(B.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét biểu thức \[A = \frac{{\sqrt x - 2}}{{\sqrt x + 7}}\].

Với \(x \ge 0,\) ta luôn có \(\sqrt x + 7 > 0.\)

Điều kiện xác định của biểu thức \(A\)\(x \ge 0.\)

Xét biểu thức \(B = \frac{x}{{x - 4}} - \frac{1}{{2 - \sqrt x }} + \frac{1}{{\sqrt x + 2}}\).

Với \(x \ge 0,\) ta có \[x - 4 = \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right).\]

Điều kiện xác định của biểu thức \(B\)\(x \ge 0,\,\,x - 4 \ne 0\) tức là \(x \ge 0,\,\,x \ne 4.\)

Câu hỏi cùng đoạn

Câu 2:

b) Tính giá trị của biểu thức \(A\) khi \(x = 25.\)

Xem lời giải

verified Giải bởi Vietjack

b) Thay \(x = 25\) (thỏa mãn điều kiện) vào biểu thức \(A,\) ta được:

\[A = \frac{{\sqrt {25} - 2}}{{\sqrt {25} + 7}} = \frac{{5 - 2}}{{5 + 7}} = \frac{3}{{12}} = \frac{1}{4}.\]

Vậy \(A = \frac{1}{4}\) khi \(x = 25.\)

Câu 3:

c) Chứng minh rằng \[B = \frac{{\sqrt x }}{{\sqrt x - 2}}.\]

Xem lời giải

verified Giải bởi Vietjack

c) Với \(x \ge 0,\,\,x \ne 4,\) ta có:

\(B = \frac{x}{{x - 4}} - \frac{1}{{2 - \sqrt x }} + \frac{1}{{\sqrt x + 2}}\)

 \( = \frac{x}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)

 \( = \frac{{x + \sqrt x + 2 + \sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)\( = \frac{{x + 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)

 \( = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x - 2}}.\)

Vậy với \(x \ge 0,\,\,x \ne 4,\) thì \(B = \frac{{\sqrt x }}{{\sqrt x - 2}}.\)

Câu 4:

d) Cho biểu thức \[P = AB.\] Tìm tất cả các giá trị nguyên của \(x\) để \[\sqrt P \le \frac{1}{2}.\]

Xem lời giải

verified Giải bởi Vietjack

d) Với \(x \ge 0,\,\,x \ne 4,\) ta có: \(P = AB = \frac{{\sqrt x - 2}}{{\sqrt x + 7}} \cdot \frac{{\sqrt x }}{{\sqrt x - 2}}\)\[ = \frac{x}{{\sqrt x + 7}}.\]

Với \(x \ge 0,\,\,x \ne 4,\) ta cũng có \(P \ge 0\). Khi đó, \(\sqrt P \le \frac{1}{2}\) suy ra \(P \le \frac{1}{4}.\)

Ta có: \(P \le \frac{1}{4}\)

\[\frac{{\sqrt x }}{{\sqrt x + 7}} \le \frac{1}{4}\]

\[\frac{{4\sqrt x }}{{4\left( {\sqrt x + 7} \right)}} \le \frac{{\sqrt x + 7}}{{4\left( {\sqrt x + 7} \right)}}\]

\[4\sqrt x \le \sqrt x + 7\]

\[3\sqrt x \le 7\]

\[\sqrt x \le \frac{7}{3}\]

\[x \le \frac{{49}}{9}\]

Kết hợp các điều kiện, ta có \[0 \le x \le \frac{{49}}{9};\,\,x \ne 4.\]

\[x\] nguyên nên \[x \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,5} \right\}\]

Vậy \[x \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,5} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định \(x \ne  - 1,\,\,x \ne 1.\)

Ta có: \(\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{4}{{1 - {x^2}}}\)

\[\frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} - \frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]

\(\frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{ - 4}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\)

\({\left( {x - 1} \right)^2} - {\left( {x + 1} \right)^2} =  - 4\)

\(\left( {x - 1 + x + 1} \right)\left( {x - 1 - x - 1} \right) =  - 4\)

\(2x.\left( { - 2} \right) =  - 4\)

\( - 4x =  - 4\)

    \(x = 1\) (không thỏa mãn).

Vậy phương trình đã cho vô nghiệm.

Lời giải

a) Chứng minh bốn điểm \[A,M,O,N\] cùng thuộc một đường tròn. (ảnh 1)

a) Vì \(AM,\,\,AN\) là hai tiếp tuyến của đường tròn \(\left( O \right)\) lần lượt tại \(M,\,\,N\) nên \(AM \bot OM,\,\,AN \bot ON.\)

Gọi \[E\] là trung điểm của \[OA\]. Khi đó \(OE = AE = \frac{1}{2}OA.\)

Xét \[\Delta MOA\] vuông tại \[M\]\[ME\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[ME = \frac{1}{2}OA\].

Xét \[\Delta NOA\] vuông tại \[N\]\[NE\] là đường trung tuyến ứng với cạnh huyền \(OA\) nên \[NE = \frac{1}{2}OA\].

\[NE = ME = OE = AE = \frac{1}{2}OA\] nên bốn điểm \[A,M,O,N\] cùng thuộc đường tròn tâm \[E,\] đường kính \[OA\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP