Câu hỏi:

24/12/2025 8 Lưu

Cho đoạn thẳng AB, với M là trung điểm. Trên đường trung trực Mt của đoạn thẳng AB lấy điểm I bất kì. Vẽ tia A\(x\) sao cho AI là phân giác góc BA\(x\). Đường thẳng BI cắt A\(x\) tại N. Gọi C là điểm đối xứng của A qua N,H là hình chiếu vuông góc của C lên AB.

a)     Chứng minh rằng tam giác NHB cân

b)     Chứng minh đẳng thức: B\({{\rm{H}}^2}\)= HI.BN

c)  c)    Khi điểm I di chuyển trên đường trung trực Mt đến vị trí làm cho tam giác ABC vuông tại C, hãy tính tỉ số \(\frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho đoạn thẳng AB, với M là trung điểm. Trên đường trung trực Mt của đoạn thẳng AB lấy điểm I bất kì. Vẽ tia (ảnh 1)

a) Chứng minh \(\Delta {\rm{NHB}}\) cân.

\(\Delta {\rm{AHC}}\) vuông tại \({\rm{H}}\) có \({\rm{HN}}\) là trung tuyến nên \({\rm{NA}} = {\rm{NC}} = {\rm{NH}}\) nên \(\Delta {\rm{HNA}}\) cân tại N, suy ra  (1)..

Theo tính chất góc ngoài của tam giác thì \(\widehat {{\rm{NHA}}} = \widehat {{\rm{HNB}}} + \widehat {{\rm{HBN}}}\) (2).

Từ (1) và (2) suy ra \(\widehat {{\rm{HNB}}} = \widehat {{\rm{HBN}}}\) hay \(\Delta {\rm{NHB}}\) cân tại H.

 Chứng minh \({\rm{B}}{{\rm{H}}^2} = HI.{\rm{BN}}\)

Theo a) \(\Delta {\rm{NHB\;}}\)cân tại H suy ra \(HB = HN = \frac{1}{2}\)AC (3)

Xét \(\Delta {\rm{NHI\;v\`a \;}}\Delta {\rm{BHI\;c\'o }}\)

\(\left\{ {\begin{array}{*{20}{c}}{IAN = IBH}\\{IA = IB}\\{AN = BH\left( { = HN} \right)}\end{array} \Rightarrow \Delta {\rm{ANI}} = \Delta {\rm{BHI}} \Rightarrow {\rm{IN}} = {\rm{IH}}} \right.\)

Dẫn đến \(\Delta {\rm{NIH\;c\^a n\;tai I}} \Rightarrow \widehat {IHN}{\rm{ = }}\widehat {INH} \Rightarrow \Delta {\rm{NHB}}\~\Delta {\rm{NIH}}\) (hai tam giác cân có góc ở đáy bằng nhau)

              \( \Rightarrow \frac{{{\rm{BH}}}}{{{\rm{BN}}}} = \frac{{{\rm{HI}}}}{{{\rm{HN}}}} \Rightarrow {\rm{BH}}.{\rm{BN}} = {\rm{HI}}.{\rm{BN}} \Rightarrow {\rm{B}}{{\rm{H}}^2} = {\rm{HI}}.{\rm{BN}}\)

b)     Tính tỉ số \(\frac{{{\rm{AB}}}}{{{\rm{AC}}}}{\rm{khi\;}} \Rightarrow {\rm{ABC\;vu\^o ng}}\)

Theo hệ thức lượng trong tam giác vuông và định lí Pytago ta có

\({\rm{B}}{{\rm{C}}^2} = {\rm{BH}}.{\rm{BA}} = {\rm{A}}{{\rm{B}}^2} - {\rm{A}}{{\rm{C}}^2} \Leftrightarrow {\rm{A}}{{\rm{B}}^2} - {\rm{BH}}.{\rm{BA}} - {\rm{A}}{{\rm{C}}^2} = 0\left( 4 \right)\)

Từ (3) và(4) ta có 2\({\rm{A}}{{\rm{B}}^2} - {\rm{AB}}.{\rm{AC}} - 2{\rm{A}}{{\rm{C}}^2} = 0\)(5)

Vì AC>0, chia 2 vế cho \(A{C^2}\) ta được phương trình bậc 2 với \(x = \frac{{AB}}{{AC}}\) là:            \(2{x^2} - {\rm{x}} - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{x}} = \frac{{1 + \sqrt {17} }}{4}}\\{{\rm{x}} = \frac{{1 - \sqrt {17} }}{4}}\end{array}} \right.\)

Do \(\frac{{1 - \sqrt {17} }}{4} < 0{\rm{\;}}\left( {{\rm{loai}}} \right)\) nên ta chọn \({\rm{x}} = \frac{{1 + \sqrt {17} }}{4}\), hay \(\frac{{{\rm{AB}}}}{{{\rm{AC}}}} = \frac{{1 + \sqrt {17} }}{4}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB, H là hình chiếu vuông góc của A lên đường (ảnh 1)

a)     Chứng minh \({\rm{BH}} \bot {\rm{AI}}\)

Gọi \({\rm{M}}\) là giao điểm của \({\rm{EI}}\) và \({\rm{AC}}\), ta có \({\rm{M}}\) là trực tâm của tam giác \({\rm{ECD}} \Rightarrow {\rm{DM}}\)//\({\rm{BC}}\)..

Tam giác ABC có

\({\rm{DA}} = {\rm{DB}},{\rm{\;DM}}\parallel {\rm{BC}} \Rightarrow {\rm{MA}} = {\rm{MC}}\).

Tam giác \({\rm{AHC}}\) có

\({\rm{MA}} = {\rm{MC}},{\rm{\;MI}}\parallel {\rm{AH}} \Rightarrow {\rm{IH}} = {\rm{IC}}\).

Gọi \({\rm{N}}\) là trung điểm của \({\rm{AH}}\) ta có \({\rm{IN}}\parallel {\rm{AC}} \Rightarrow {\rm{IN}} \bot {\rm{AD}}\).

Tam giác \({\rm{ADI\;c\'o }}\)

\({\rm{AH}} \bot {\rm{DI}},{\rm{\;IN}} \bot {\rm{AD}}\) do đó \({\rm{N}}\) là trực tâm \( \Rightarrow {\rm{DN}} \bot {\rm{AI}} \Rightarrow {\rm{BH}} \bot {\rm{AI}}\).

b)     Chứng minh tứ giác \({\rm{BCEK}}\) nội tiếp

Từ \({\rm{BH}} \bot {\rm{AI\;}} \Rightarrow {\rm{IN}}\parallel {\rm{AC}} \Rightarrow \widehat {{\rm{IAD}}} = \widehat {{\rm{KBD}}}\)

Xét \(\Delta {\rm{KBD\;v\`a \;}}\Delta {\rm{IAD}}\) có:

\(\widehat {{\rm{IAD}}} = \widehat {{\rm{KBD}}},{\rm{\;DA}} = {\rm{DB}},{\rm{\;}}\widehat {{\rm{ADI}}} = \widehat {{\rm{BDK}}} \Rightarrow \Delta {\rm{KBD\;}} = {\rm{\;}}\Delta {\rm{IAD}}\)

\( \Rightarrow {\rm{DK}} = {\rm{DI}}\)  (1).

Vì \(\Delta {\rm{DAC\;}}\~{\rm{\;}}\Delta {\rm{DIE}}\) (g.g) \( \Rightarrow \frac{{{\rm{DA}}}}{{{\rm{DI}}}} = \frac{{{\rm{DC}}}}{{{\rm{DE}}}} \Rightarrow {\rm{DA}}.{\rm{DE}} = {\rm{DI}}.{\rm{DC}}\)(2).

Từ (1) và (2) kết hợp với \({\rm{DA}} = {\rm{DB}}\) suy ra \({\rm{DA}}.{\rm{DE}} = {\rm{DK}}.{\rm{DC}}\)

\( \Rightarrow \frac{{{\rm{DK}}}}{{{\rm{DE}}}} = \frac{{{\rm{DB}}}}{{{\rm{DC}}}} \Rightarrow \Delta {\rm{DEK\;}}\~{\rm{\;}}\Delta {\rm{DCB}} \Rightarrow \widehat {{\rm{DEK}}} = \widehat {{\rm{DCB}}}\)dẫn đến \({\rm{BCEK}}\) nội tiếp.

Lời giải

Ta có biểu thức:\(\Delta  = {{\rm{b}}^2} - 4{\rm{ac}} = {{\rm{b}}^2} - 4{\rm{a}}\left( {{\rm{b}} - 2{\rm{a}}} \right) = {\left( {2{\rm{a}} - {\rm{b}}} \right)^2} + 4{{\rm{a}}^2} > 0,\forall {\rm{a}} \ne 0\); do đó, phương trình luôn có 2 nghiệm phân biệt.

Giả sử 2 nghiệm đã cho là \({{\rm{x}}_1},{{\rm{x}}_2}\).Theo định lí Viét, ta có \(\left\{ {\begin{array}{*{20}{c}}{{{\rm{x}}_1} + {{\rm{x}}_2} =  - \frac{{\rm{b}}}{{\rm{a}}}}\\{{{\rm{x}}_1}{{\rm{x}}_2} = \frac{{\rm{c}}}{{\rm{a}}}}\end{array}} \right.\)

Từ giả thiết \(2{\rm{a}} - {\rm{b}} + {\rm{c}} = 0 \Rightarrow \frac{{\rm{b}}}{{\rm{a}}} - \frac{{\rm{c}}}{{\rm{a}}} = 2\), do đó

\( - \left( {{{\rm{x}}_1} + {{\rm{x}}_2}} \right) - {{\rm{x}}_1}{{\rm{x}}_2} = 2\left( {{{\rm{x}}_1} + 1} \right)\left( {{{\rm{x}}_2} + 1} \right) =  - 1\)(*). Nếu 2 nghiệm đều dương thì \(\left( {{{\rm{x}}_1} + 1} \right)\left( {{{\rm{x}}_2} + 1} \right) > 1\), mâu thuẫn với (*).

Vậy 2 nghiệm của phương trình không thể đều dương.