Câu hỏi:

24/12/2025 5 Lưu

Trong một hộp có 20 viên bi xanh và 4 viên bi đỏ, các viên bi đều có hình dạng và kích thước giống nhau. Một học sinh lấy ngẫu nhiên lần lượt 2 viên bi (lấy không hoàn lại) trong hộp.

a) Xác suất để lần thứ nhất lấy được viên bi đỏ là \(\frac{1}{5}\).
Đúng
Sai
b) Xác suất để lần thứ hai lấy được viên bi đỏ, biết lần thứ nhất lấy được viên bi đỏ là \(\frac{3}{{23}}\).
Đúng
Sai
c) Xác suất để cả hai lần đều lấy được viên bi đỏ là \(\frac{1}{{46}}\).
Đúng
Sai
d) Xác suất để ít nhất một lần lấy được viên bi xanh là \(\frac{{45}}{{46}}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) Đ

Gọi A là biến cố “Lấy được viên bi đỏ ở lần thứ nhất”

B là biến cố “Lấy được viên bi đỏ ở lần thứ hai”

a) Xác suất để lần thứ nhất lấy được viên bi đỏ là \(P\left( A \right) = \frac{4}{{24}} = \frac{1}{6}\).

b) Xác suất để lần thứ hai lấy được viên bi đỏ, biết lần thứ nhất lấy được viên bi đỏ là

\(P\left( {B|A} \right) = \frac{3}{{23}}\).

c) Xác suất để cả hai lần đều lấy được viên bi đỏ là \(P\left( {A \cap B} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{1}{6}.\frac{3}{{23}} = \frac{1}{{46}}\).

d) Xác suất để ít nhất một lần lấy được viên bi xanh là \(1 - \frac{1}{{46}} = \frac{{45}}{{46}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = - 2 + t}\\{z = 2t}\end{array}} \right.\).                        
B. \[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t}\\{y = - 2}\\{z = - 2t}\end{array}} \right.\].                           
C. \[\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = - 2}\\{z =  - 2t}\end{array}} \right.\].                           
D. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 2 + t}\\{z = 2t}\end{array}} \right.\).

Lời giải

Đáp án đúng là: A

Trung điểm \[M\] của \[\;BC\] có tọa độ là: \(M\left( {1; - 1;2} \right)\).

Trung tuyến \(AM\) của tam giác \(ABC\) đi qua điểm\(A\left( {1;\, - 2;\,0} \right)\) và nhận \(\overrightarrow {AM} = \left( {0;\,1;\,2} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = - 2 + t}\\{z = 2t}\end{array}} \right.\).

Câu 2

a) Ô tô dừng lại sau 10 giây.
Đúng
Sai
b) Quãng đường \(s\left( t \right)\) mà xe ô tô đi được trong thời gian \(t\) giây là một nguyên hàm của hàm số \(v\left( t \right)\).
Đúng
Sai
c) Từ thời điểm đạp phanh đến khi dừng lại, ô tô đi được quãng đường là 90 m.
Đúng
Sai
d) Quãng đường mà ô tô đi được trong 15 giây cuối bằng 125 m.
Đúng
Sai

Lời giải

a) Đ, b) Đ, c) S, d) S

a) Ô tô dừng lại khi \(v\left( t \right) = - 2t + 20 = 0 \Leftrightarrow t = 10\) giây.

b) Có \(s\left( t \right) = \int {v\left( t \right)dt} \).

c) Quãng đường ô tô đi được từ lúc đạp phanh đến khi dừng là

\(S = \int\limits_0^{10} {\left( { - 2t + 20} \right)dt} = 100\)m.

d) Quãng đường mà ô tô đi được trong 15 giây cuối (bao gồm 5 giây đi với vận tốc 20 m/s và 10 giây đi từ lúc đạp phanh đến khi dừng hẳn) là \(20.5 + 100 = 200\)m.

Câu 5

A. \(\int {\sin x{\rm{d}}x = \cos x + C} \). 
B. \(\int {\frac{1}{{{{\sin }^2}x}}} {\rm{d}}x = - \cot x + C\).    
C. \(\int {\frac{1}{{{{\cos }^2}x}}} {\rm{d}}x = \tan x + C\).    
D. \(\int {\cos x{\rm{d}}x = \sin x + C} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 1\).                
B. \(1\).                    
C. \( - 3\).                               
D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( {3;2;0} \right)\).
Đúng
Sai
b) Đường thẳng \(\left( d \right)\) có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 1; - 3; - 2} \right)\).
Đúng
Sai
c) \(H\left( {1;1;2} \right)\) là hình chiếu của \(A\) lên đường thẳng \(d\).
Đúng
Sai
d) \(A'\left( { - 1;0;4} \right)\) là điểm đối xứng với \(A\) qua đường thẳng \(d\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP