Tìm điều kiện của tham số \(m\) để hàm số \(y = m{x^3} - \left( {m - 1} \right){x^2} + 3x - m + 2\) đồng biến trên khoảng \(\left( {1; + \infty } \right)\)?
Quảng cáo
Trả lời:
Đáp án đúng là A
Phương pháp giải
Chia trường hợp với hệ số \(a = 0\) và \(a \ne 0\). Cô lập tham số \(m\)
Lời giải
TH1: \(m = 0\). Khi \(m = 0\) hàm số trở thành : \(y = {x^2} + 3x + 2\)
\(y' = 2x + 3\)
\(y' = 0 \Rightarrow x = \frac{{ - 3}}{2}\)
Ta thấy rằng hàm số \(y = {x^2} + 3x + 2\) đồng biến trên khoảng : \(\left( { - \frac{3}{2}; + \infty } \right)\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\)
\( \Rightarrow \) Giá trị \(m = 0\) thỏa mãn yêu cầu bài toán
TH2: \(m \ne 0\)
\(y' = 3m{x^2} - 2\left( {m - 1} \right)x + 3\)
Để hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\) thì \(y' \ge 0,\forall x \in \left( {1; + \infty } \right)\)
\(3m{x^2} - 2\left( {m - 1} \right)x + 3 \ge 0,\forall x \in \left( {1; + \infty } \right)\)
\( \Leftrightarrow 3m{x^2} - 2mx + 2x + 3 \ge 0\)
\( \Leftrightarrow m\left( {3{x^2} - 2x} \right) + 2x + 3 \ge 0\)
\( \Leftrightarrow m\left( {3{x^2} - 2x} \right) \ge - 2x - 3\,\,\,\left( 1 \right)\)
Ta thấy \(3{x^2} - 2x > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x > \frac{2}{3}}\\{x < 0}\end{array}} \right.\). Vậy trong khoảng \(\left( {1; + \infty } \right)\) biểu thức \(3{x^2} - 2x > 0\)
\( \Rightarrow \left( 1 \right) \Leftrightarrow m \ge \frac{{ - 2x - 3}}{{3{x^2} - 2x}}\forall x \in \left( {1; + \infty } \right)\)
Đặt
Khảo sát hàm số : \(f\left( x \right) = \frac{{ - 2x - 3}}{{3{x^2} - 2x}}\)
\(f'\left( x \right) = \frac{{ - 6{x^2} + 18x - 2}}{{{{\left( {3{x^2} - 2x} \right)}^2}}}\)
\(f'\left( x \right) = 0 \Rightarrow - 6{x^2} + 18x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{ - 9 + \sqrt {93} }}{6} \notin \left( {1; + \infty } \right)}\\{x = \frac{{ - 9 - \sqrt {93} }}{6} \notin \left( {1; + \infty } \right)}\end{array}} \right.\)
Bảng biến thiên của hàm số \(y = f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\)

Dựa vào bảng biến thiên ta thấy :
Vậy \(m \ge - 5\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng công thức xác suất toàn phần, công thức Bayes
Lời giải
Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình
Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.
Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"
Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)
Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi
5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi
3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi
Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)
Áp dụng công thức tính xác suất toàn phần:
\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)
Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)
Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)
Lời giải
Đáp án đúng là “825”
Phương pháp giải
Lời giải
Sau 2,5 phút (150 giây) số vòng mà bánh xe quay được là \(\frac{{150}}{{10}}.25 = 375\)
Bán kính bánh xe là \(R = 350{\rm{\;mm}} = 3,5{\rm{\;m}}\)
Khi đó quãng đường mà người đi xe đạp thực hiện được sau 2,5 phút là
\(375.2\pi R = 375.2\pi .0,35 \approx 825\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

