Câu hỏi:

24/12/2025 9 Lưu

Tìm điều kiện của tham số \(m\) để hàm số \(y = m{x^3} - \left( {m - 1} \right){x^2} + 3x - m + 2\) đồng biến trên khoảng \(\left( {1; + \infty } \right)\)?

A. \(m \ge - 5\).    
B. \(m \ge 5\).       
C. \(0 < m < 5\).   
D. \(m \le 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Phương pháp giải

Chia trường hợp với hệ số \(a = 0\)\(a \ne 0\). Cô lập tham số \(m\)

Lời giải
TH1:
\(m = 0\). Khi \(m = 0\) hàm số trở thành : \(y = {x^2} + 3x + 2\)
\(y' = 2x + 3\)

\(y' = 0 \Rightarrow x = \frac{{ - 3}}{2}\)
Ta thấy rằng hàm số \(y = {x^2} + 3x + 2\) đồng biến trên khoảng : \(\left( { - \frac{3}{2}; + \infty } \right)\) nên hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\)
\( \Rightarrow \) Giá trị \(m = 0\) thỏa mãn yêu cầu bài toán

TH2: \(m \ne 0\)
\(y' = 3m{x^2} - 2\left( {m - 1} \right)x + 3\)
Để hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\) thì \(y' \ge 0,\forall x \in \left( {1; + \infty } \right)\)

\(3m{x^2} - 2\left( {m - 1} \right)x + 3 \ge 0,\forall x \in \left( {1; + \infty } \right)\)

\( \Leftrightarrow 3m{x^2} - 2mx + 2x + 3 \ge 0\)

\( \Leftrightarrow m\left( {3{x^2} - 2x} \right) + 2x + 3 \ge 0\)
\( \Leftrightarrow m\left( {3{x^2} - 2x} \right) \ge - 2x - 3\,\,\,\left( 1 \right)\)
Ta thấy \(3{x^2} - 2x > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x > \frac{2}{3}}\\{x < 0}\end{array}} \right.\). Vậy trong khoảng \(\left( {1; + \infty } \right)\) biểu thức \(3{x^2} - 2x > 0\)
\( \Rightarrow \left( 1 \right) \Leftrightarrow m \ge \frac{{ - 2x - 3}}{{3{x^2} - 2x}}\forall x \in \left( {1; + \infty } \right)\)
Đặt
Khảo sát hàm số : \(f\left( x \right) = \frac{{ - 2x - 3}}{{3{x^2} - 2x}}\)

\(f'\left( x \right) = \frac{{ - 6{x^2} + 18x - 2}}{{{{\left( {3{x^2} - 2x} \right)}^2}}}\)
\(f'\left( x \right) = 0 \Rightarrow - 6{x^2} + 18x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{{ - 9 + \sqrt {93} }}{6} \notin \left( {1; + \infty } \right)}\\{x = \frac{{ - 9 - \sqrt {93} }}{6} \notin \left( {1; + \infty } \right)}\end{array}} \right.\)
Bảng biến thiên của hàm số \(y = f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\)

Tìm điều kiện của tham số m để hàm số y= m{x^3} - ( {m - 1} ){x^2} + 3x - m + 2 (ảnh 1)

Dựa vào bảng biến thiên ta thấy :
Vậy \(m \ge - 5\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 0,31.  
B. 0,41.       
C. 0,25.  
D. 0,35.

Lời giải

Đáp án đúng là A

Phương pháp giải

Sử dụng công thức xác suất toàn phần, công thức Bayes

Lời giải

Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình

Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.

Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"

Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)

Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi

5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi

3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi

Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)

Áp dụng công thức tính xác suất toàn phần:

\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)

Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)

Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)

Lời giải

Đáp án đúng là “825”

Phương pháp giải

Lời giải

Sau 2,5 phút (150 giây) số vòng mà bánh xe quay được là \(\frac{{150}}{{10}}.25 = 375\)

Bán kính bánh xe là \(R = 350{\rm{\;mm}} = 3,5{\rm{\;m}}\)

Khi đó quãng đường mà người đi xe đạp thực hiện được sau 2,5 phút là

\(375.2\pi R = 375.2\pi .0,35 \approx 825\)

Câu 5

A. \(2a\sqrt {21} \).             
B. \(a\sqrt {21} \)
C. \(3a\sqrt {21} \).           
D. \(4a\sqrt {21} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP