Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\left( C \right)\). Xác định phương trình tiếp tuyến của đồ thị hàm số \(\left( C \right)\) biết tiếp tuyến đi qua điểm \(A\left( {1; - 1} \right)\)
Cho hàm số \(y = \frac{{2x + 1}}{{x - 1}}\left( C \right)\). Xác định phương trình tiếp tuyến của đồ thị hàm số \(\left( C \right)\) biết tiếp tuyến đi qua điểm \(A\left( {1; - 1} \right)\)
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Xác định phương trình tiếp tuyến tại 1 điểm, sau đó thay tọa độ điểm \(A\) vào phương trình vừa tìm được để tìm \({x_0}\)
Lời giải
Ta có: \(y' = \frac{{ - 3}}{{{{(x - 1)}^2}}}\)
Gọi \(M\left( {{x_0};{y_0}} \right) \in \left( C \right) \Rightarrow M\left( {{x_0};\frac{{2{x_0} + 1}}{{{x_0} - 1}}} \right)\)
Phương trình tiếp tuyến của đồ thị hàm số \(\left( C \right)\) tại điểm \(M\) có dạng:
\(d:y = \frac{{ - 3}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{2{x_0} + 1}}{{{x_0} - 1}}\)
Đường thẳng \(d\) đi qua \(A\left( {1; - 1} \right)\)
\( \Rightarrow - 1 = \frac{{ - 3\left( {1 - {x_0}} \right)}}{{{{\left( {{x_0} - 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} - 1}} \Leftrightarrow - 1 = \frac{3}{{{x_0} - 1}} + \frac{{2{x_0} + 1}}{{{x_0} - 1}} \Leftrightarrow - 1 = \frac{{3 + 2{x_0} + 1}}{{{x_0} - 1}}\)
\( \Rightarrow 1 - {x_0} = 3 + 2{x_0} + 1 \Leftrightarrow - 3{x_0} = 3 \Rightarrow {x_0} = - 1\)
Vậy phương trình tiếp tuyến cần tìm là: \(d:y = \frac{{ - 3}}{4}\left( {x + 1} \right) + \frac{1}{2} = - \frac{3}{4}x - \frac{1}{4}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng công thức xác suất toàn phần, công thức Bayes
Lời giải
Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình
Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.
Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"
Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)
Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi
5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi
3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi
Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)
Áp dụng công thức tính xác suất toàn phần:
\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)
Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)
Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)
Lời giải
Đáp án đúng là “825”
Phương pháp giải
Lời giải
Sau 2,5 phút (150 giây) số vòng mà bánh xe quay được là \(\frac{{150}}{{10}}.25 = 375\)
Bán kính bánh xe là \(R = 350{\rm{\;mm}} = 3,5{\rm{\;m}}\)
Khi đó quãng đường mà người đi xe đạp thực hiện được sau 2,5 phút là
\(375.2\pi R = 375.2\pi .0,35 \approx 825\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

