Cho hình hộp \(ABCD.A'B'C'D'\) là hình lập phương có độ dài cạnh \(4a\). Tính \(\left| {\overrightarrow {AA'} + 2\overrightarrow {DC} - 4\overrightarrow {A'D'} } \right|\)
Quảng cáo
Trả lời:
Đáp án đúng là D
Phương pháp giải
Phân tích vecto và tính toán
Lời giải

Gọi \(M\) là trung điểm \(BB'\)
\(\begin{array}{l}\overrightarrow {AA'} + 2\overrightarrow {DC} - 4\overrightarrow {A'D'} \\ = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {DC} - 4\overrightarrow {AD} \\ = \overrightarrow {AB'} + \overrightarrow {AB} - 4\overrightarrow {AD} \\ = 2\overrightarrow {AM} - 4\overrightarrow {AD} \\ = 2(\overrightarrow {AM} - \overrightarrow {AD} ) - 2\overrightarrow {AD} \\ = 2\overrightarrow {DM} + 2\overrightarrow {DA} \end{array}\)
Gọi \(N\) là trung điểm \(AM \Rightarrow 2\overrightarrow {DM} + 2\overrightarrow {DA} = 4\overrightarrow {DN} \)
\( \Rightarrow \left| {\overrightarrow {AA'} + 2\overrightarrow {DC} - 4\overrightarrow {A'D'} } \right| = 4\left| {\overrightarrow {DN} } \right| = 4DN\)
Cạnh hình lập phương bằng \(4a\)
Xét \(\Delta ABM\) vuông tại \(B\) có: \(A{M^2} = A{B^2} + B{M^2} = 16{a^2} + 4{a^2} = 20{a^2}\)
Xét \(\Delta BDM\) vuông tại \(B\) có:
\(D{M^2} = B{D^2} + B{M^2} = A{D^2} + A{B^2} + B{M^2} = 16{a^2} + 16{a^2} + 4{a^2} = 36{a^2}\)
Trong \(\Delta ADM\) có \(DN\) là trung tuyến ta có:
\(D{N^2} = \frac{{A{D^2} + D{M^2}}}{2} - \frac{{A{M^2}}}{4} = \frac{{16{a^2} + 36{a^2}}}{2} - \frac{{20{a^2}}}{4} = 21{a^2} \Rightarrow DN = a\sqrt {21} \)
Vậy \(\left| {\overrightarrow {AA'} + 2\overrightarrow {DC} - 4\overrightarrow {A'D'} } \right| = 4a\sqrt {21} \)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Phương pháp giải
Sử dụng công thức xác suất toàn phần, công thức Bayes
Lời giải
Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình
Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.
Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"
Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)
Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi
5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi
3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi
Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)
Áp dụng công thức tính xác suất toàn phần:
\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)
Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)
Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)
Lời giải
Đáp án đúng là “825”
Phương pháp giải
Lời giải
Sau 2,5 phút (150 giây) số vòng mà bánh xe quay được là \(\frac{{150}}{{10}}.25 = 375\)
Bán kính bánh xe là \(R = 350{\rm{\;mm}} = 3,5{\rm{\;m}}\)
Khi đó quãng đường mà người đi xe đạp thực hiện được sau 2,5 phút là
\(375.2\pi R = 375.2\pi .0,35 \approx 825\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

