Trong không gian \(Oxyz\), cho đường thẳng \({d_1}:\frac{{x + 1}}{1} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\); \({d_2}:\frac{{x + 2}}{3} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2};\) \({d_3}:\left\{ {\begin{array}{*{20}{l}}{x = 1}\\{y = 1 - t\left( {t \in R} \right)}\\{z = t}\end{array}} \right.\). Phương trình đường thẳng d cắt 3 đường thẳng \({d_1};{d_2};{d_3}\) lần lượt tại \(A,B,C\) sao cho \(B\) là trung điểm của \(AC\) có véc tơ chỉ phương \(\vec u = \left( {a;b;c} \right)\). Tỉ số \(T = \frac{{a + b}}{c}\) bằng:
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Gọi tọa độ giao điểm. Xác định tọa độ giao điểm đó
Lời giải
Gọi các điểm \(A,C\) lần lượt là \(A\left( { - 1 + s;s;1 - s} \right);C\left( {1;1 - t;t} \right)\).
\( \Rightarrow \) véc tơ chỉ phương của đường thẳng \(d\) là \(\vec u = \left( {2 - s;1 - t - s;t + s - 1} \right)\)
Vì \(B\) là trung điểm của \(AC\) nên \(B\left( {\frac{s}{2};\frac{{s - t + 1}}{2};\frac{{1 - s + t}}{2}} \right)\).
Ta có \({d_2}:\frac{{x + 2}}{3} = \frac{y}{{ - 1}} = \frac{{z + 1}}{2} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - x - 3y + 2 = 0}\\{2x - 3z + 1 = 0}\end{array}} \right.\)
Vì \(B\) thuộc đường thẳng \({d_2}\) nên ta có:
\(\left\{ {\begin{array}{*{20}{l}}{\frac{{ - s}}{2} - \frac{{3\left( {s - t + 1} \right)}}{2} + 2 = 0}\\{s + 4 - \frac{{3\left( {1 - s + t} \right)}}{2} - 3 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3t - 4s = - 1}\\{ - 3t + 5s = 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = - 1/3}\\{s = 0}\end{array}} \right.} \right.} \right.\)
\(\vec u = \left( {2;\frac{4}{3}; - \frac{4}{3}} \right)\)
Vậy \(T = \frac{{a + b}}{c} = - \frac{5}{2}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "1/4 | 0,25"
Phương pháp giải
Vận dụng công thức: \(E = \frac{F}{{|q|}}\)
Định luật Coulomb: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
Lời giải
Theo định luật Coulomb ta có: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
mặt khác: \(E = \frac{F}{{|q|}}\)
\( \Rightarrow E = k\frac{{|Q|}}{{\varepsilon .{r^2}}}\)
Giả sử môi ô vuông là 1 đơn vị đo.
Ta có:
\( \Rightarrow {E_1} = k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}}\)
\( \Rightarrow {E_2} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
Xét tại điểm \({E_1} = {E_2}\) ứng với \[{r_1} = {r_2}\]
\( \Rightarrow k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
\( \Leftrightarrow \frac{1}{{{\varepsilon _1}r_1^2}} = \frac{1}{{{\varepsilon _2}r_2^2}} \Rightarrow \frac{{{\varepsilon _1}}}{{{\varepsilon _2}}} = \frac{{r_2^2}}{{r_1^2}} = 0,25\)
Lời giải
Đáp án đúng là "69/2"
Phương pháp giải
Lập hàm và dùng ứng dụng hàm số để giải bài toán
Lời giải
Gọi giá bán mới là \(x\) triệu đồng với \(x \in \left[ {30;35} \right]\)
Khi đó số xe bán ra là \(400 + \left( {35 - x} \right)100\).
Lợi nhuận thu được là:
\(f\left( x \right) = \left[ {400 + \left( {35 - x} \right)100} \right]\left( {x - 30} \right) = - 100{x^2} + 6900x - 117000 = - 100{\left( {x - \frac{{69}}{2}} \right)^2} + 2025 \le 2025\)
Dấu bằng xảy ra khi \(x = \frac{{69}}{2}\). Vậy giá bán mới \(\frac{{69}}{2}\) triệu đồng thì thu được lợi nhuận cao nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



