Câu hỏi:

24/12/2025 139 Lưu

Một nhà đầu tư quyết định đầu tư vào một quỹ đầu tư tăng trưởng, trong đó quỹ này có lợi suất hàng năm theo cấp số nhân. Nhà đầu tư bắt đầu với một khoản đầu tư ban đầu là 100 triệu đồng và quỹ này có lãi suất tăng trưởng hàng năm là \(7{\rm{\% }}\). Tuy nhiên, mỗi năm nhà đầu tư sẽ tiếp tục đầu tư thêm một khoản tiền vào quỹ, với số tiền này cũng tăng trưởng theo cấp số nhân, và mỗi năm tăng thêm 5 triệu đồng so với năm trước. Tính số tiền có trong quỹ sau 5 năm?

A. 175400000.       
B. 175320000.         
C. 175000000.     
D. 175640000.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Cấp số nhân

Lời giải

Số tiền đầu tư ban đầu \({P_1} = 100000000\) đồng

Lãi suất ngân hàng hàng năm là \(7{\rm{\% }}\), tức là mỗi năm số tiền trong quỹ tăng theo cấp số nhân với tỉ lệ \(r = 1,07\)

Khoản tiền đầu tư ban đầu với lãi suất \(7{\rm{\% }}\) mỗi năm:

\({A_1} = 100000000{(1 + 7{\rm{\% }})^n}\)

Mỗi năm nhà đầu tư sẽ thêm một khoản tiền vào quỹ, bắt đầu từ 5000000 đồng và tăng dần mỗi năm thêm 5000000 đồng so với năm trước. Số tiền đầu tư vào năm thứ n là 5000000n đồng. Mỗi khoản này cũng tăng trưởng với lãi suất hàng năm \(7{\rm{\% }}\), số tiền có sau 5-n năm sẽ được tính bởi công thức:

\({A_2} = 5.n.{(1 + 7{\rm{\% }})^{5 - n}}\)

Vậy tổng số tiền có trong quỹ sau 5 năm là:

Một nhà đầu tư quyết định đầu tư vào một quỹ đầu tư tăng trưởng, trong đó quỹ này có lợi suất hàng năm theo cấp số nhân (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,4 | 0,25

Đáp án đúng là "1/4 | 0,25"

Phương pháp giải

Vận dụng công thức: \(E = \frac{F}{{|q|}}\)

Định luật Coulomb: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)

Lời giải

Theo định luật Coulomb ta có: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)

mặt khác: \(E = \frac{F}{{|q|}}\)

\( \Rightarrow E = k\frac{{|Q|}}{{\varepsilon .{r^2}}}\)

Giả sử môi ô vuông là 1 đơn vị đo.

Ta có:

\( \Rightarrow {E_1} = k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}}\)

\( \Rightarrow {E_2} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)

Xét tại điểm \({E_1} = {E_2}\) ứng với \[{r_1} = {r_2}\]

\( \Rightarrow k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)

\( \Leftrightarrow \frac{1}{{{\varepsilon _1}r_1^2}} = \frac{1}{{{\varepsilon _2}r_2^2}} \Rightarrow \frac{{{\varepsilon _1}}}{{{\varepsilon _2}}} = \frac{{r_2^2}}{{r_1^2}} = 0,25\)

Lời giải

(1) 69/2

Đáp án đúng là "69/2"

Phương pháp giải

Lập hàm và dùng ứng dụng hàm số để giải bài toán

Lời giải

Gọi giá bán mới là \(x\) triệu đồng với \(x \in \left[ {30;35} \right]\)

Khi đó số xe bán ra là \(400 + \left( {35 - x} \right)100\).

Lợi nhuận thu được là:

\(f\left( x \right) = \left[ {400 + \left( {35 - x} \right)100} \right]\left( {x - 30} \right) =  - 100{x^2} + 6900x - 117000 =  - 100{\left( {x - \frac{{69}}{2}} \right)^2} + 2025 \le 2025\)

Dấu bằng xảy ra khi \(x = \frac{{69}}{2}\). Vậy giá bán mới \(\frac{{69}}{2}\) triệu đồng thì thu được lợi nhuận cao nhất.

Câu 5

A. Hà Nội có biên độ nhiệt nhỏ hơn Cà Mau do ảnh hưởng của gió mùa Đông Bắc vào mùa đông.
B. Cà Mau có mùa khô sâu sắc hơn Hà Nội do ảnh hưởng của gió mùa Tây Nam vào mùa hạ.
C. Hà Nội có một số tháng nhiệt độ dưới 20 là do ảnh hưởng của gió Tín phong bán cầu Bắc.
D. Hà Nội có mùa khô ít sâu sắc hơn là do ảnh hưởng của gió mùa Đông Bắc vào cuối mùa đông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Phần lớn dân số nước ta sinh sống ở thành thị.
B. Tỉ lệ dân nông thôn thấp hơn dân thành thị.
C. Tỉ lệ dân thành thị năm 2020 rất cao.
D. Số dân thành thị giai đoạn 2000 – 2015 tăng nhanh nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP