Câu hỏi:

24/12/2025 4 Lưu

Một chiếc đồng hồ chỉ đúng vào lúc 12 giờ trưa. Nó chạy chậm 2 phút mỗi giờ. Hỏi sau bao lâu (kể từ 12 giờ trưa) chiếc đồng hồ sẽ chỉ 12 giờ đúng một lần nữa?

 

A. 11 giờ 20 phút 30 giây.  
B. 12 giờ 24 phút 50 giây.
C. 10 giờ 34 phút 45 giây.   
D. 10 giờ 15 phút 20 giây.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là B

Phương pháp giải

Tư duy suy luận và đánh giá

Lời giải

Sau mỗi giờ thực tế (60 phút), đồng hồ chỉ hiển thị 58 phút.

Tỷ lệ giữa thời gian thực tế và thời gian đồng hồ là:

Tỷ lệ = Thời gian hiển thị của đồng hồ : Thời gian thực tế \( \Rightarrow \) Tỷ lệ \( = \frac{{58}}{{60}} = \frac{{29}}{{30}}\)

Nghĩa là nếu đồng hồ hiển thị 12h (720 phút) thì thời gian thực tế sẽ là: \(T = \frac{{720}}{{\frac{{29}}{{30}}}} \approx 744,83\)

Thời gian thực tế là 744 phút 50 giây, tức là 12 giờ 24 phút 50 giây kể từ 12 giờ trưa

Vậy sau 12 giờ 24 phút 50 giây, chiếc đồng hồ sẽ chỉ 12 giờ đúng một lần nữa.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 0,31.  
B. 0,41.       
C. 0,25.  
D. 0,35.

Lời giải

Đáp án đúng là A

Phương pháp giải

Sử dụng công thức xác suất toàn phần, công thức Bayes

Lời giải

Gọi \({A_1},{A_2},{A_3}\) lần lượt là các biến cố gọi một sinh viên Giỏi, Khá, Trung Bình

Nên \({A_1},{A_2},{A_3}\) là hệ biến cố đầy đủ.

Gọi \(B\): "sinh viên đó trả lời được 4 câu hỏi"

Ta có: \(P\left( {{A_1}} \right) = \frac{{C_4^1}}{{C_{20}^1}} = \frac{1}{5},P\left( {{A_2}} \right) = \frac{5}{{20}} = \frac{1}{4},P\left( {{A_3}} \right) = \frac{3}{{20}}\)

Theo bài ta có: 4 sinh viên giỏi trả lời được \(100{\rm{\% }}\) các câu hỏi \( \Rightarrow \) trả lời 20 câu hỏi

5 sinh viên khá trả lời \(80{\rm{\% }}\) câu hỏi \( \Rightarrow \) trả lời được \(20.80{\rm{\% }} = 16\) câu hỏi

3 sinh viên trung bình \(50{\rm{\% }}\) câu hỏi \( \Rightarrow \) Trả lời \(20.50{\rm{\% }} = 10\) câu hỏi

Từ đó \(P\left( {B\mid {A_1}} \right) = \frac{{C_{20}^4}}{{C_{20}^4}} = 1;P\left( {B\mid {A_2}} \right) = \frac{{C_{16}^4}}{{C_{20}^4}} = \frac{{364}}{{969}};P\left( {B\mid {A_3}} \right) = \frac{{C_{10}^4}}{{C_{20}^4}} = \frac{{14}}{{323}}\)

Áp dụng công thức tính xác suất toàn phần:

\(P\left( B \right) = P\left( {B\mid {A_1}} \right).P\left( {{A_1}} \right) + P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right) + P\left( {B\mid {A_3}} \right).P\left( {{A_3}} \right) = 1.\frac{1}{5} + \frac{{364}}{{969}}.\frac{1}{4} + \frac{3}{{20}}.\frac{{14}}{{323}} = \frac{{2911}}{{9690}}\)

Xác suất để sinh viên đó là sinh viên khá là: \(P\left( {{A_2}\mid B} \right)\)

Áp dụng công thức Bayes \(P\left( {{A_2}\mid B} \right) = \frac{{P\left( {B\mid {A_2}} \right).P\left( {{A_2}} \right)}}{{P\left( B \right)}} = \frac{{\frac{{364}}{{969}}.\frac{1}{4}}}{{\frac{{2911}}{{9690}}}} = \frac{{910}}{{2911}} \approx 0,31\)

Lời giải

Đáp án đúng là “825”

Phương pháp giải

Lời giải

Sau 2,5 phút (150 giây) số vòng mà bánh xe quay được là \(\frac{{150}}{{10}}.25 = 375\)

Bán kính bánh xe là \(R = 350{\rm{\;mm}} = 3,5{\rm{\;m}}\)

Khi đó quãng đường mà người đi xe đạp thực hiện được sau 2,5 phút là

\(375.2\pi R = 375.2\pi .0,35 \approx 825\)

Câu 5

A. \(2a\sqrt {21} \).             
B. \(a\sqrt {21} \)
C. \(3a\sqrt {21} \).           
D. \(4a\sqrt {21} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 2; - 1} \right)\).  
B. \(\left( { - 1;0} \right)\).        
C. \(\left( {1;2} \right)\).
D. \(\left( {0;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP