Cho hình chóp \(S.ABCD\) có đáy là hình vuông tâm \(O\) cạnh là \[a,\] \(SA\) vuông góc với đáy \(\left( {ABCD} \right)\) (tham khảo hình vẽ).

Khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\) bằng
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có \(SA \bot \left( {ABCD} \right)\), suy ra \(SA \bot BO\).
Lại có \(ABCD\) là hình vuông tâm \(O\) nên \(BO \bot AC\).
Từ đó suy ra \(BO \bot \left( {SAC} \right)\). Do đó, \(d\left( {B,\,\left( {SAC} \right)} \right) = BO\).
Ta có \(BO = \frac{{BD}}{2} = \frac{{\sqrt {A{B^2} + A{D^2}} }}{2} = \frac{{\sqrt {{a^2} + {a^2}} }}{2} = \frac{{a\sqrt 2 }}{2}\).
Vậy \(d\left( {B,\,\left( {SAC} \right)} \right) = \frac{{a\sqrt 2 }}{2}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).
Do đó, góc giữa \(SC\) với mặt phẳng \(\left( {SAB} \right)\) là \(\widehat {CSB}\).
Tam giác \(SAB\) vuông tại \(A\) có \(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{a^2} + {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 3 \).
Ta có \[BC = AD = a\].
Tam giác \(SBC\) vuông tại \(B\) có \(\tan \widehat {CSB} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\). Suy ra \(\widehat {CSB} = 30^\circ \).
Câu 2
Lời giải
Đáp án đúng là: A
Vì \(ABCD.A'B'C'D'\) là hình lập phương nên ta có:
+) \(ABCD\) là hình vuông, suy ra \(DC \bot BC\).
+) \(BC \bot \left( {DCC'D'} \right)\), suy ra \(BC \bot D'C\).
Từ đó suy ra, góc \(DCD'\) là một góc phẳng của góc nhị diện \(\left( {D,BC,D'} \right)\).
Vì \(DCC'D'\) là hình vuông nên \(\widehat {DCD'} = 45^\circ \).
Vậy góc nhị diện \(\left( {D,BC,D'} \right)\) có số đo bằng \(45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


