Câu hỏi:

24/12/2025 25 Lưu

Cho đường thẳng \(d\) có phương trình tổng quát: \(x + 2y - 3 = 0\). Phương trình tham số của đường thẳng \(d\) là

A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 - t\end{array} \right.\); 
B. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 1 + t\end{array} \right.\);                 
C. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = 1 - t\end{array} \right.\);                  
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đường thẳng \(d:x + 2y - 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow {{n_d}}  = \left( {1;\,\,2} \right)\), do đó nó có một vectơ chỉ phương là \(\overrightarrow {{u_d}}  = \left( {2;\,\, - 1} \right)\), suy ra loại đáp án B và D.

Ở đáp án C, ta thấy khi \(t = 0\) thì \(x = 2\) và \(y = 1\), thay vào phương trình \(d\) ta thấy không thỏa mãn nên loại đáp án C, vậy chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a < 0,\,\,b < 0,\,c < 0\);                                                                

B. \(a < 0,\,\,b = 0,\,c < 0\);                                 

C. \(a > 0,\,\,b > 0,\,c < 0\);                                                                 
D. \(a < 0,\,\,b > 0,\,c < 0\). 

Lời giải

Đáp án đúng là: D

Cho hàm số bậc hai \(y = a{x^2} + bx + c\,\,\,\left( {a \ne 0} \right)\) có đồ thị như hình vẽ bên dưới.  Mệnh đề nào sau đây là đúng? (ảnh 2)

Quan sát hình vẽ ta thấy đồ thị hàm số có bề lõm hướng xuống dưới nên \(a < 0\).

Lại có đồ thị cắt trục tung tại điểm phía dưới trục hoành nên \(c < 0\).

Đỉnh của đồ thị nằm bên phải trục tung nên \( - \frac{b}{{2a}} > 0 \Rightarrow b > 0\).

Lời giải

Lợi nhuận của công ty trong một tháng khi bán hết \(q\) sản phẩm là:

\(L\left( q \right) = q.R\left( q \right) - C\left( q \right) = q\left( {120 - 2q} \right) - \left( {4{q^2} + 36q - 1\,\,234} \right)\)\( =  - 6{q^2} + 84q + 1\,234\).

Để lợi nhuận công ty thu về là cao nhất, tức cần tìm \(q\) để \(L\left( q \right)\) đạt giá trị lớn nhất.

Lại có \(L\left( q \right) =  - 6{q^2} + 84q + 1\,234\) là hàm số bậc hai có hệ số \(a =  - 6 < 0\), nên nó đạt giá trị lớn nhất tại đỉnh.

Ta có: \(q =  - \frac{b}{{2a}} =  - \frac{{84}}{{2.\left( { - 6} \right)}} = 7\). Do đó, \(L\left( q \right)\)đạt giá trị lớn nhất tại \(q = 7\).

Vậy công ty A cần sản xuất 7 sản phẩm trong một tháng để thu về lợi nhuận cao nhất.

Câu 3

A. 2;                              
B. 4;                          
C. 1;                           
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 0;                              
B. 1;                          
C. 2;                           
D. 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a < 0,\,\Delta  \le 0\);                                 
B. \(a < 0,\,\Delta  \ge 0\);    
C. \(a < 0,\,\Delta  < 0\);                          
D. \(a > 0,\,\Delta  < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\];         

B. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[{\left( {a{x^2} + bx + c} \right)^2} = {\left( {d{x^2} + ex + f} \right)^2}\];              

C. Mọi nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] đều là nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \];  

D. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \] là tập hợp các nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] thỏa mãn bất phương trình \(a{x^2} + bx + c \ge 0\) (hoặc \(d{x^2} + ex + f \ge 0\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP