Câu hỏi:

24/12/2025 2 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( {3;\,\, - 1} \right)\) và \(B\left( { - 6;\,\,2} \right)\). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng \(AB\)?

A. \(\left\{ \begin{array}{l}x = 3 + 3t\\y =  - 1 - t\end{array} \right.\);        
B. \(\left\{ \begin{array}{l}x = 3 + 3t\\y =  - 1 + t\end{array} \right.\);              
C. \(\left\{ \begin{array}{l}x =  - 3t\\y = t\end{array} \right.\);                         
D. \(\left\{ \begin{array}{l}x =  - 6 - 3t\\y = 2 + t\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cách 1. Thay tọa độ các điểm \(A,\,\,B\) lần lượt vào các phương trình trong các đáp án thì thấy đáp án B không thỏa mãn.

Cách 2. Nhận thấy rằng các phương trình ở các đáp án A, C, D thì vectơ chỉ phương của các đường thẳng đó cùng phương, riêng chỉ có đáp án B thì không. Do đó chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lợi nhuận của công ty trong một tháng khi bán hết \(q\) sản phẩm là:

\(L\left( q \right) = q.R\left( q \right) - C\left( q \right) = q\left( {120 - 2q} \right) - \left( {4{q^2} + 36q - 1\,\,234} \right)\)\( =  - 6{q^2} + 84q + 1\,234\).

Để lợi nhuận công ty thu về là cao nhất, tức cần tìm \(q\) để \(L\left( q \right)\) đạt giá trị lớn nhất.

Lại có \(L\left( q \right) =  - 6{q^2} + 84q + 1\,234\) là hàm số bậc hai có hệ số \(a =  - 6 < 0\), nên nó đạt giá trị lớn nhất tại đỉnh.

Ta có: \(q =  - \frac{b}{{2a}} =  - \frac{{84}}{{2.\left( { - 6} \right)}} = 7\). Do đó, \(L\left( q \right)\)đạt giá trị lớn nhất tại \(q = 7\).

Vậy công ty A cần sản xuất 7 sản phẩm trong một tháng để thu về lợi nhuận cao nhất.

Lời giải

Giả sử đường thẳng \(d\) có dạng: \(y = ax + b\,\,\,\,{\rm{hay}}\,\,\,d:ax - y + b = 0\).

Ta có: \(d\left( {A,\,\,d} \right) = \frac{{\left| {a.\left( { - 1} \right) - 1 + b} \right|}}{{\sqrt {{a^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| { - a + b - 1} \right|}}{{\sqrt {{a^2} + 1} }} = \sqrt 8 \). Suy ra \(\frac{{\left| { - a + b - 1} \right|}}{{\sqrt 8 }} = \sqrt {{a^2} + 1} \).

Lại có: \(d\left( {B,\,\,d} \right) = \frac{{\left| {a.0 - 2 + b} \right|}}{{\sqrt {{a^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {b - 2} \right|}}{{\sqrt {{a^2} + 1} }} = \sqrt 2 \). Suy ra \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{a^2} + 1} \) (*).

Do đó, \(\frac{{\left| { - a + b - 1} \right|}}{{\sqrt 8 }} = \frac{{\left| {b - 2} \right|}}{{\sqrt 2 }}\)\( \Leftrightarrow \sqrt 2 \left| { - a + b - 1} \right| = \sqrt 8 \left| {b - 2} \right|\)

\( \Leftrightarrow \sqrt 2 \left| { - a + b - 1} \right| = 2\sqrt 2 \left| {b - 2} \right|\)

\( \Leftrightarrow \left| { - a + b - 1} \right| = 2\left| {b - 2} \right|\)

Trường hợp 1: \( - a + b - 1 = 2\left( {b - 2} \right) \Leftrightarrow a + b - 3 = 0\)\( \Leftrightarrow a = 3 - b\).

Thay \(a = 3 - b\) vào (*) ta được: \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{{\left( {3 - b} \right)}^2} + 1}  \Leftrightarrow \left| {b - 2} \right| = \sqrt 2 .\sqrt {{b^2} - 6b + 10} \)

\( \Rightarrow {b^2} - 4b + 4 = 2\left( {{b^2} - 6b + 10} \right)\)\( \Leftrightarrow {b^2} - 8b + 16 = 0 \Leftrightarrow b = 4\).

Suy ra \(a = 3 - 4 =  - 1\).

Vậy \(d: - x - y + 4 = 0\,\,\,{\rm{hay}}\,\,d:x + y - 4 = 0\).

Trường hợp 2: \( - a + b - 1 =  - 2\left( {b - 2} \right) \Leftrightarrow a - 3b + 5 = 0\)\( \Leftrightarrow a = 3b - 5\).

Thay \(a = 3b - 5\) vào (*) ta được: \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{{\left( {3b - 5} \right)}^2} + 1}  \Leftrightarrow \left| {b - 2} \right| = \sqrt 2 .\sqrt {9{b^2} - 30b + 26} \)

\( \Rightarrow {b^2} - 4b + 4 = 2\left( {9{b^2} - 30b + 26} \right)\)\( \Leftrightarrow 17{b^2} - 56b + 48 = 0\) (vô nghiệm).

Vậy phương trình đường thẳng \(d\) cần lập có dạng: \(x + y - 4 = 0\). 

Câu 3

A. \(2x - 7y + 2 = 0\);                                      

B. \( - 2x + y - 7 = 0\);

C. \(2x - y - 7 = 0\);                                          
D. \( - 2x - y + 7 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a < 0,\,\,b < 0,\,c < 0\);                                                                

B. \(a < 0,\,\,b = 0,\,c < 0\);                                 

C. \(a > 0,\,\,b > 0,\,c < 0\);                                                                 
D. \(a < 0,\,\,b > 0,\,c < 0\). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = 4{x^2} - 3x + 1\);                                                                 

B. \(y =  - {x^2} + 3x + 1\);                            

C. \(y =  - {x^2} + \frac{3}{2}x + 1\);                                                 
D. \(y = {x^2} - \frac{3}{2}x + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 3;                          
B. 4;                              
C. 5;                           
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP