Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 5\) và điểm \(A\left( {0;\,\,1} \right)\). Tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\) có phương trình là
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \({\left( {0 + 1} \right)^2} + {\left( {1 - 3} \right)^2} = 5\), do đó \(A\) thuộc đường tròn \(\left( C \right)\).
Đường tròn \(\left( C \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 5\) có tâm là \(I\left( { - 1;\,\,3} \right)\). Tiếp tuyến của \(\left( C \right)\) tại \(A\left( {0;\,\,1} \right)\) có vectơ pháp tuyến \(\overrightarrow {IA} = \left( {1;\, - 2} \right)\), nên có phương trình
\(1\left( {x - 0} \right) - 2\left( {y - 1} \right) = 0\) hay \(x - 2y + 2 = 0\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(a < 0,\,\,b < 0,\,c < 0\);
B. \(a < 0,\,\,b = 0,\,c < 0\);
Lời giải
Đáp án đúng là: D

Quan sát hình vẽ ta thấy đồ thị hàm số có bề lõm hướng xuống dưới nên \(a < 0\).
Lại có đồ thị cắt trục tung tại điểm phía dưới trục hoành nên \(c < 0\).
Đỉnh của đồ thị nằm bên phải trục tung nên \( - \frac{b}{{2a}} > 0 \Rightarrow b > 0\).
Lời giải
Lợi nhuận của công ty trong một tháng khi bán hết \(q\) sản phẩm là:
\(L\left( q \right) = q.R\left( q \right) - C\left( q \right) = q\left( {120 - 2q} \right) - \left( {4{q^2} + 36q - 1\,\,234} \right)\)\( = - 6{q^2} + 84q + 1\,234\).
Để lợi nhuận công ty thu về là cao nhất, tức cần tìm \(q\) để \(L\left( q \right)\) đạt giá trị lớn nhất.
Lại có \(L\left( q \right) = - 6{q^2} + 84q + 1\,234\) là hàm số bậc hai có hệ số \(a = - 6 < 0\), nên nó đạt giá trị lớn nhất tại đỉnh.
Ta có: \(q = - \frac{b}{{2a}} = - \frac{{84}}{{2.\left( { - 6} \right)}} = 7\). Do đó, \(L\left( q \right)\)đạt giá trị lớn nhất tại \(q = 7\).
Vậy công ty A cần sản xuất 7 sản phẩm trong một tháng để thu về lợi nhuận cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\];
B. Tập nghiệm của phương trình \[\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \] là tập nghiệm của phương trình \[{\left( {a{x^2} + bx + c} \right)^2} = {\left( {d{x^2} + ex + f} \right)^2}\];
C. Mọi nghiệm của phương trình \[a{x^2} + bx + c = d{x^2} + ex + f\] đều là nghiệm của phương trình \[\sqrt {a{x^2} + bx + c} = \sqrt {d{x^2} + ex + f} \];
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
