Câu hỏi:

25/12/2025 4 Lưu

Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi \[A\] là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và \[B\] là biến cố “Kết quả ba lần gieo là như nhau”. Xác định biến cố \[A \cup B.\]

A. \[A \cup B = \left\{ {SSS,\,SSN,\,NSS,\,SNS,\,NNN} \right\}\].
B. \[A \cup B = \left\{ {SSS,\,NNN} \right\}\].
C. \[A \cup B = \left\{ {SSS,\,SSN,\,NSS,\,NNN} \right\}\].
D. \[A \cup B = \Omega \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có \(A = \left\{ {SSS,SSN,NSS} \right\}\); \(B = \left\{ {SSS,NNN} \right\}\).

Khi đó \(A \cup B = \left\{ {SSS,SSN,NSS,NNN} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(S = \left\{ 1 \right\}\).                   
B. \(S = \left\{ { - 1} \right\}\).   
C. \(S = \left\{ 4 \right\}\).  
D. \(S = \left\{ 2 \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \({2^x} = 4\)\( \Leftrightarrow {2^x} = {2^2} \Leftrightarrow x = 2\).

Vậy tập nghiệm của bất phương trình là \(S = \left\{ 2 \right\}\).

Lời giải

Hướng dẫn giải

a1) \(y' = 5{x^4} + \sin x\).  

a2)\(y' = 33{\left( {3x + 4} \right)^{10}}\). 

b) Có \(y' = 4{x^3} - 8x\). Có \(y'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} - 8.\left( { - 1} \right) = 4\).

Điểm thuộc đồ thị đã cho có hoành độ \(x =  - 1\) là \(\left( { - 1;2} \right)\).

Do đó phương trình tiếp tuyến của đồ thị hàm số là: \(y = 4\left( {x + 1} \right) + 2 = 4x + 6\).

Câu 6

A. \(y' = {2023^x}.\)   
B. \(y' = {2023^{x - 1}}.\)   
C. \(y' = {2023.2023^{x - 1}}.\) 
D. \(y' = {2023^x}\ln 2023.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP