Tính đạo hàm của hàm số \(y = {2023^x}\) ?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Có \(y' = {\left( {{{2023}^x}} \right)^\prime } = {2023^x}\ln 2023.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có \[v\left( t \right) = s'\left( t \right) = - 3{t^2} + 18t + 1 = - 3\left( {{t^2} - 6t + 9 - 9} \right) + 1 = - 3{\left( {t - 3} \right)^2} + 28 \le 28\].
Vậy giá trị lớn nhất của vận tốc chất điểm là 28 m/s đạt được khi \(t = 3\left( {\rm{s}} \right)\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
\({9^x} - {4.3^x} + 3 < 0\)
\( \Leftrightarrow \left( {{3^x} - 1} \right)\left( {{3^x} - 3} \right) < 0\)
\( \Leftrightarrow 1 < {3^x} < 3\)
\( \Leftrightarrow 0 < x < 1\).
Vậy bất phương trình đã cho có tập nghiệm là \(S = \left( {0;1} \right)\) nên không có nghiệm nguyên dương.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
