Câu hỏi:

25/12/2025 5 Lưu

Cho hình chóp \(S.ABC\) có \(SA = SB = SC\) và tam giác \(ABC\) vuông tại \(B\). Vẽ \(SH \bot \left( {ABC} \right)\), \(H \in \left( {ABC} \right)\). Khẳng định nào sau đây đúng?

A. \(H\)trùng với trọng tâm tam giác \(ABC\).
B. \(H\)trùng với trực tâm tam giác \(ABC\).
C. \(H\)trùng với trung điểm của \(AC\).       
D. \(H\)trùng với trung điểm của \(BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC vuông tại B. Vẽ SH vuông góc (ABC), H thuộc (ABC). Khẳng định nào sau đây đúng? (ảnh 1)

Vì \(SA = SB = SC\) nên \(HA = HB = HC\).

Do đó \(H\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

Mà \(\Delta ABC\) vuông tại B, nên tâm đường tròn ngoại tiếp \(\Delta ABC\) là trung điểm của \(AC.\)

Do đó \(H\) là trung điểm của \(AC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(S = \left\{ 1 \right\}\).                   
B. \(S = \left\{ { - 1} \right\}\).   
C. \(S = \left\{ 4 \right\}\).  
D. \(S = \left\{ 2 \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \({2^x} = 4\)\( \Leftrightarrow {2^x} = {2^2} \Leftrightarrow x = 2\).

Vậy tập nghiệm của bất phương trình là \(S = \left\{ 2 \right\}\).

Lời giải

Hướng dẫn giải

a1) \(y' = 5{x^4} + \sin x\).  

a2)\(y' = 33{\left( {3x + 4} \right)^{10}}\). 

b) Có \(y' = 4{x^3} - 8x\). Có \(y'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} - 8.\left( { - 1} \right) = 4\).

Điểm thuộc đồ thị đã cho có hoành độ \(x =  - 1\) là \(\left( { - 1;2} \right)\).

Do đó phương trình tiếp tuyến của đồ thị hàm số là: \(y = 4\left( {x + 1} \right) + 2 = 4x + 6\).

Câu 6

A. \(y' = {2023^x}.\)   
B. \(y' = {2023^{x - 1}}.\)   
C. \(y' = {2023.2023^{x - 1}}.\) 
D. \(y' = {2023^x}\ln 2023.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP