Câu hỏi:

25/12/2025 43 Lưu

III. Lời giải chi tiết tự luận

(1,0 điểm)

a) Để kiểm tra thời gian sử dụng pin của chiếc đèn tích điện mới, chị Nga thống kê thời gian sử dụng đèn của mình từ lúc sạc đầy pin cho đến khi hết pin ở bảng sau:

Thời gian sử dụng (giờ)

\(\left[ {7;\,9} \right)\)

\(\left[ {9;\,11} \right)\)

\(\left[ {11;13} \right)\)

\(\left[ {13;15} \right)\)

\(\left[ {15;17} \right)\)

Số lần

2

5

7

6

3

 

Chị Nga cho rằng có khoảng 25% số lần sạc pin đèn chỉ dùng được dưới 10 giờ. Nhận định của chị Nga có hợp lí không?

b) Cho \[a,b > 0\]\[a,b \ne 1\], thu gọn biểu thức sau

\[P = {\log _{\sqrt a }}{b^3} \cdot {\log _b}{a^4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Cỡ mẫu \(n = 2 + 5 + 7 + 6 + 3 = 23\).

Gọi \({x_1};\,{x_2};...;\,{x_{23}}\) là mẫu số liệu được xếp theo thứ tự không giảm. Ta có tứ phân vị thứ nhất của dãy số liệu trên là \({x_6} \in \left[ {9;\,11} \right)\).

Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là

\({Q_1} = 9 + \frac{{\frac{{1.23}}{4} - 2}}{5}.\left( {11 - 9} \right) = 10,5\).

Do \({Q_1}\) gần với 10 nên nhận định của chị Nga là hợp lí.

b) \[P = {\log _{\sqrt a }}{b^3} \cdot {\log _b}{a^4} = {\log _{{a^{\frac{1}{2}}}}}{b^3} \cdot {\log _b}{a^4} = \frac{3}{{\frac{1}{2}}} \cdot 4 \cdot {\log _a}b \cdot \frac{1}{{{{\log }_a}b}} = 24.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(a\) là số tiền vay, \(r\) là lãi suất, \(m\) là số tiền hàng tháng trả.

Số tiền nợ sau tháng thứ nhất là: \({N_1} = a\left( {1 + r} \right) - m\).

Số tiền nợ sau tháng thứ hai là: \({N_2} = \left[ {a\left( {1 + r} \right) - m} \right] + \left[ {a\left( {1 - r} \right) - m} \right]r - m\)

     \( = a{\left( {1 + r} \right)^2} - m\left[ {\left( {1 + r} \right) + 1} \right]\)

….

Số tiền nợ sau \(n\) tháng là:

\({N_n} = a{\left( {1 + r} \right)^n} - m\left[ {{{\left( {1 + r} \right)}^{n - 1}} + {{\left( {1 + r} \right)}^{n - 2}} + ... + 1} \right] = a{\left( {1 + r} \right)^n} - m\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r}\).

Sau \(n\) tháng anh Nam trả hết nợ: \({N_n} = a{\left( {1 + r} \right)^n} - m\frac{{{{\left( {1 + r} \right)}^n} - 1}}{r} = 0\)

\(\begin{array}{l} \Leftrightarrow 1000{\left( {1 + 0,005} \right)^n} - 30\frac{{{{\left( {1 + 0,005} \right)}^n} - 1}}{{0,005}} = 0\\ \Leftrightarrow n = 36,55\end{array}\)

Vậy \(37\) tháng thì anh Nam trả hết nợ.

Câu 2

A. Nếu \(A\) \[B\] đối nhau thì \[A \cup B = \Omega \].           
B. Nếu \[A \cap B = \emptyset \] thì \(A\) \[B\] xung khắc.                                        
C. Nếu \[A = \overline B \] thì \(B = \overline A \).             
D. Nếu \(A\) là biến cố không thì \(\overline A \) là biến cố chắc chắn.

Lời giải

Đáp án đúng là: C

Cho hai biến cố \(A\)\[B\] của cùng một phép thử có không gian mẫu \(\Omega \).

+ Nếu \(A\) \[B\] đối nhau thì \[A \cup B = \Omega \] nên đáp án A đúng.

+ Nếu \[A \cap B = \emptyset \]  thì \(A\) \[B\] gọi là hai biến cố xung khắc nên đáp án B đúng.

+ Nếu \(A\) là biến cố không thì \(\overline A \) là biến cố chắc chắn nên đáp án D đúng.

Vậy đáp án C sai.

Câu 3

A. \(\frac{4}{3}\).   
B. \(3\).                    
C. \(\frac{5}{3}\).                
D. \(\frac{5}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[ - 2.\]                 
B. \[\frac{3}{2}.\]  
C. \[\frac{1}{2}.\]                
D. \[ - \frac{5}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(SC \bot \left( {AFB} \right).\)        
B. \(SC \bot \left( {AEC} \right).\)              
C. \(SC \bot \left( {AED} \right).\)                          
D. \(SC \bot \left( {AEF} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha + \beta }}\].  
B. \[{a^\alpha } \cdot {a^\beta } = {a^{\alpha \beta }}\].        
C. \[\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\beta - \alpha }}\].                      
D. \[{\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha + \beta }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP