Cho hình chóp \(S.ABCD\) có đáy là hình vuông, \[SB\] vuông góc với đáy, gọi \(O = BD \cap CA\). Góc giữa đường thẳng \(SO\) và mặt phẳng \(\left( {ABCD} \right)\) là:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông, \[SB\] vuông góc với đáy, gọi \(O = BD \cap CA\). Góc giữa đường thẳng \(SO\) và mặt phẳng \(\left( {ABCD} \right)\) là:
A. \(\widehat {SOB}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Vì \(SB \bot \left( {ABCD} \right)\) nên \(BO\) là hình chiếu của \(SO\) trên mặt phẳng \(\left( {ABCD} \right)\).
Do đó góc giữa đường thẳng \(SO\) và mặt phẳng \(\left( {ABCD} \right)\) là \(\widehat {SOB}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Hàm số \(y = {\left( \pi \right)^x}\) là hàm số mũ.
Lời giải
Hướng dẫn giải
Ta có: \(n\left( \Omega \right) = C_{40}^2\)
Gọi các biến cố:
\(D\): “Lấy được 2 bi viên đỏ” ta có: \(n\left( D \right) = C_{20}^2 = 190\);
\(X\): “Lấy được 2 bi viên xanh” ta có:\(n\left( X \right) = C_{10}^2 = 45\);
\(V\): “Lấy được 2 bi viên vàng” ta có: \(n\left( V \right) = C_6^2 = 15\);
\(T\): “ Lấy được 2 bi màu trắng” ta có:\(n\left( T \right) = C_4^2 = 6\).
Ta có \(D,X,V,T\) là các biến cố đôi một xung khắc và \[A = D \cup X \cup V \cup T\].
\(P\left( A \right) = P\left( D \right) + P\left( X \right) + P\left( V \right) + P\left( T \right) = \frac{{256}}{{C_{40}^2}} = \frac{{64}}{{195}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Nếu đường thẳng \(a\) cắt một đường thẳng \(d \subset \left( P \right)\) thì góc giữa \(a\) và \(d\) là góc giữa đường thẳng \(a\) và \((P)\).
B. Nếu đường thẳng \(a\) không vuông góc với \((P)\)thì góc giữa \(a\) và hình chiếu \(a'\) của \(a\) trên \((P)\) gọi là góc giữa đường thẳng \(a\) và \((P)\).
C. Nếu đường thẳng \(a\) vuông góc với đường thẳng \(d \subset \left( P \right)\) thì góc giữa \(a\) và \(d\) là góc giữa đường thẳng \(a\) và \((P)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.