Câu hỏi:

26/12/2025 12 Lưu

(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình vuông, \(SA \bot \left( {ABCD} \right)\).

a) Chứng minh \(BC \bot \left( {SAB} \right)\).

b) Chứng minh \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) có đáy là hì (ảnh 1)

a) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BC \subset \left( {ABCD} \right)\)\( \Rightarrow BC \bot SA\).

Và \(BC \bot AB\) (do \(ABCD\) là hình vuông).

Mà \(SA,AB \subset \left( {SAB} \right)\). Vậy \(BC \bot \left( {SAB} \right)\).

b) Ta có \(SA \bot \left( {ABCD} \right)\), mà \(BD \subset \left( {ABCD} \right)\)\( \Rightarrow SA \bot BD\).

Và \(BD \bot AC\) (do \(ABCD\) là hình vuông).

Mà \(SA,AC \subset \left( {SAC} \right)\).

Suy ra \(BD \bot \left( {SAC} \right)\).

Mặt khác ta có: \(BD \subset \left( {SBD} \right)\).

Vậy \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Đáp án đúng là: B Vì \(MN{\rm{//}}M'N'\) nên \(\left( {MN,\,\,M'P'} \right) = \left( {M'N',\,M'P'} \right) = \widehat {N'M'P'} = 45^\circ \).  (ảnh 1)

Gọi \(E\) là trung điểm của \(BD\).

Khi đó ta có \(ME,\,\,NE\) lần lượt là đường trung bình của các tam giác \(BCD,\,\,ABD\).

Suy ra \(ME{\rm{//}}CD,\,NE{\rm{//}}AB\). Do đó, \(\left( {AB,\,CD} \right) = \left( {NE,\,ME} \right)\).

Ta có \(ME = \frac{{CD}}{2} = \frac{{2a}}{2} = a,\,\,NE = \frac{{AB}}{2} = \frac{{2a}}{2} = a\).

Áp dụng hệ quả của định lí côsin trong tam giác \(MNE\) ta có

\(\cos \widehat {MEN} = \frac{{M{E^2} + N{E^2} - M{N^2}}}{{2ME \cdot NE}} = \frac{{{a^2} + {a^2} - {{\left( {a\sqrt 3 } \right)}^2}}}{{2 \cdot a \cdot a}} = \frac{{ - 1}}{2}\).

Suy ra \(\widehat {MEN} = 120^\circ \).

Khi đó, \(\left( {NE,\,ME} \right) = 180^\circ - \widehat {MEN} = 180^\circ - 120^\circ = 60^\circ \).

Vậy \(\left( {AB,\,CD} \right) = 60^\circ \).

Câu 2

A. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau.
B. Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì vuông góc với nhau.
C. Hai đường thẳng cùng song song với đường thẳng thứ ba thì có thể song song với nhau.
D. Hai đường thẳng cùng song song với đường thẳng thứ ba thì vuông góc với nhau.  

Lời giải

Đáp án đúng là: C

+) Phương án A và B sai vì hai đường thẳng cùng vuông góc với đường thẳng thứ ba có thể cắt nhau hoặc chéo nhau.

+) Phương án C đúng vì hai đường thẳng cùng song song với đường thẳng thứ ba thì phương của chúng song song với nhau.

+) Phương án D sai vì hai đường thẳng cùng song song với đường thẳng thứ ba thì có thể song song hoặc trùng nhau.

Câu 4

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                  
B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{\log _7}\frac{{a + b}}{2} = \frac{1}{3}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].                       
B. \[{\log _3}\frac{{a + b}}{7} = \frac{1}{2}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].        
C. \[{\log _3}\frac{{a + b}}{2} = \frac{1}{7}\left( {{{\log }_3}a + {{\log }_3}b} \right)\].                       
D. \[{\log _7}\frac{{a + b}}{3} = \frac{1}{2}\left( {{{\log }_7}a + {{\log }_7}b} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP