Cho chuyển động được xác định bởi phương trình \[S = {t^3} - 2{t^2} + 3t\], với \(t\) là thời gian tính bằng giây, \(S\) là quãng đường chuyển động tính bằng mét. Tính từ lúc bắt đầu chuyển động, tại thời điểm \(t = 2\) giây thì vận tốc v của chuyển động có giá trị bằng bao nhiêu?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có \[v\left( t \right) = S'\left( t \right) = 3{t^2} - 4t + 3\].
Khi đó \(v\left( 2 \right) = {3.2^2} - 4.2 + 3 = 7{\rm{m/s}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Do \(O\) là tâm của hình vuông \(ABCD\) nên \(O\) là trung điểm của \(AC\).
Mà \(I\) là trung điểm của \(SC\) nên \(IO\) là đường trung bình của \(\Delta SAC\).
Suy ra \(IO//SA\) mà \(SA \bot \left( {ABCD} \right)\) nên \(OI \bot \left( {ABCD} \right)\).
Do đó \(d\left( {I,\left( {ABCD} \right)} \right) = IO\).
Lời giải
Hướng dẫn giải
Kẻ \(AM \bot BC\) tại \(M\).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(AM \bot BC\)\( \Rightarrow BC \bot \left( {SAM} \right)\)
Ta có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SAM} \right) \bot BC\\\left( {SAM} \right) \cap \left( {SBC} \right) = SM\\\left( {SAM} \right) \cap \left( {ABC} \right) = AM\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,AM} \right)\).
Suy ra góc giữa \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng góc \(\widehat {SMA}\).
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = 45^\circ \).
Xét \(\Delta AMB\) vuông tại \(M\), ta có \(AM = AB.\sin \widehat {ABM} = a\sqrt 2 .\sin 45^\circ = a\).
Xét \(\Delta SAM\) vuông tại \(A,\)\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).
Câu 3
C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.