Giả sử \(\,v = v(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Đạo hàm của hàm số \(y = \frac{1}{v}\,\,\left( {v = v(x) \ne 0} \right)\) là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(y' = - \frac{{v'}}{{{v^2}}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi \(I = AC \cap BD\). Ta có: \(\left\{ \begin{array}{l}BD \bot AI\\BD \bot AA'\end{array} \right. \Rightarrow BD \bot \left( {AIA'} \right);\quad BD = \left( {BDA'} \right) \cap \left( {ABCD} \right).\)
Do đó góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\) là \(\widehat {AIA'}\).
Ta có: \(\Delta AA'I\) vuông tại \(A\), có:
\(AA' = a;AI = \frac{{a\sqrt 2 }}{2} \Rightarrow A'I = \sqrt {A{{A'}^2} + A{I^2}} = \frac{{a\sqrt 6 }}{2} \Rightarrow \sin \widehat {AIA'} = \frac{{AA'}}{{A'I}} = \frac{{\sqrt 6 }}{3}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Có \(A'B'//CD\) và \(A'B' = CD\) (chúng cùng song song và bằng \(AB\)).
Do đó \(A'B'CD\) là hình bình hành \( \Rightarrow A'D//B'C\).
Do đó \(\left( {A'B,B'C} \right) = \left( {A'B,A'D} \right) = \widehat {BA'D}\).
Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(A'B = BD = DA'\).
Do đó \(\Delta A'BD\) là tam giác đều. Suy ra \(\widehat {BA'D} = 60^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.