Câu hỏi:

26/12/2025 40 Lưu

Trong hình hộp \[ABCD.A'B'C'D'\] có tất cả các cạnh đều bằng nhau. Góc giữa đường thẳng \(A'B\) và \(DC'\) là

A. \[30^\circ \].     
B. \[45^\circ \].     
C. \[60^\circ \].     
D. \[90^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Trong hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Góc giữa đường thẳng A'B và DC' là  (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp có tất cả các cạnh bằng nhau nên \(ABB'A'\) là hình thoi.

Suy ra \(A'B \bot AB'\) mà \(AB'//DC'\).

Do đó \(A'B \bot DC'\).

Vậy \(\left( {A'B,DC'} \right) = 90^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a căn bậc hai 2. Biết SA vuông góc (ABC) và SA = a. Tính góc giữa hai mặt phẳng (SBC) và (ABC). (ảnh 1)

Kẻ \(AM \bot BC\) tại \(M\).

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(AM \bot BC\)\( \Rightarrow BC \bot \left( {SAM} \right)\)

Ta có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SAM} \right) \bot BC\\\left( {SAM} \right) \cap \left( {SBC} \right) = SM\\\left( {SAM} \right) \cap \left( {ABC} \right) = AM\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,AM} \right)\).

Suy ra góc giữa \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng góc \(\widehat {SMA}\).

Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = 45^\circ \).

Xét \(\Delta AMB\) vuông tại \(M\), ta có \(AM = AB.\sin \widehat {ABM} = a\sqrt 2 .\sin 45^\circ  = a\).

Xét \(\Delta SAM\) vuông tại \(A,\)\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Giá trị sin của góc giữa hai mặt phẳng (BDA') và (ABCD) bằng (ảnh 1)

Gọi \(I = AC \cap BD\). Ta có: \(\left\{ \begin{array}{l}BD \bot AI\\BD \bot AA'\end{array} \right. \Rightarrow BD \bot \left( {AIA'} \right);\quad BD = \left( {BDA'} \right) \cap \left( {ABCD} \right).\)

Do đó góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\) là \(\widehat {AIA'}\).

Ta có: \(\Delta AA'I\) vuông tại \(A\), có:

\(AA' = a;AI = \frac{{a\sqrt 2 }}{2} \Rightarrow A'I = \sqrt {A{{A'}^2} + A{I^2}}  = \frac{{a\sqrt 6 }}{2} \Rightarrow \sin \widehat {AIA'} = \frac{{AA'}}{{A'I}} = \frac{{\sqrt 6 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(90^\circ \).  
B. \(60^\circ \).   
C. \(30^\circ \). 
D. \(45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai biến cố \[A\]và \[B\] không thể cùng xảy ra.
B.  Hai biến cố \[A\]và \[B\] là hai biến cố độc lập.
C.  Hai biến cố \[A\]và \[B\] là hai biến cố xung khắc.
D. Ta có \[P(A \cup B) = P(A) + P(B) = 0,9\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau.

B. Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.

C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.

D. Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP