Cho hình chóp \(S.ABC\) có \(SA = SB = SC\) và tam giác \(ABC\) vuông tại \(B\). Vẽ \(SH \bot \left( {ABC} \right)\), \(H \in \left( {ABC} \right)\). Khẳng định nào sau đây đúng?
A. \(H\)trùng với trọng tâm tam giác \(ABC\).
B. \(H\)trùng với trực tâm tam giác \(ABC\).
C. \(H\)trùng với trung điểm của \(AC\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Vì \(SA = SB = SC\) nên \(HA = HB = HC\).
Do đó \(H\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).
Mà \(\Delta ABC\) vuông tại B, nên tâm đường tròn ngoại tiếp \(\Delta ABC\) là trung điểm của \(AC.\)
Do đó \(H\) là trung điểm của \(AC.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi \(I = AC \cap BD\). Ta có: \(\left\{ \begin{array}{l}BD \bot AI\\BD \bot AA'\end{array} \right. \Rightarrow BD \bot \left( {AIA'} \right);\quad BD = \left( {BDA'} \right) \cap \left( {ABCD} \right).\)
Do đó góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\) là \(\widehat {AIA'}\).
Ta có: \(\Delta AA'I\) vuông tại \(A\), có:
\(AA' = a;AI = \frac{{a\sqrt 2 }}{2} \Rightarrow A'I = \sqrt {A{{A'}^2} + A{I^2}} = \frac{{a\sqrt 6 }}{2} \Rightarrow \sin \widehat {AIA'} = \frac{{AA'}}{{A'I}} = \frac{{\sqrt 6 }}{3}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Có \(A'B'//CD\) và \(A'B' = CD\) (chúng cùng song song và bằng \(AB\)).
Do đó \(A'B'CD\) là hình bình hành \( \Rightarrow A'D//B'C\).
Do đó \(\left( {A'B,B'C} \right) = \left( {A'B,A'D} \right) = \widehat {BA'D}\).
Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(A'B = BD = DA'\).
Do đó \(\Delta A'BD\) là tam giác đều. Suy ra \(\widehat {BA'D} = 60^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.