Câu hỏi:

26/12/2025 42 Lưu

Cho hình chóp \(S.ABC\) có \(SA = SB = SC\) và tam giác \(ABC\) vuông tại \(B\). Vẽ \(SH \bot \left( {ABC} \right)\), \(H \in \left( {ABC} \right)\). Khẳng định nào sau đây đúng?

A. \(H\)trùng với trọng tâm tam giác \(ABC\).

B. \(H\)trùng với trực tâm tam giác \(ABC\).

C. \(H\)trùng với trung điểm của \(AC\).      

D. \(H\)trùng với trung điểm của \(BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC vuông tại B. Vẽ SH vuông góc (ABC), H thuộc (ABC). Khẳng định nào sau đây đúng? (ảnh 1)

Vì \(SA = SB = SC\) nên \(HA = HB = HC\).

Do đó \(H\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

Mà \(\Delta ABC\) vuông tại B, nên tâm đường tròn ngoại tiếp \(\Delta ABC\) là trung điểm của \(AC.\)

Do đó \(H\) là trung điểm của \(AC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Giá trị sin của góc giữa hai mặt phẳng (BDA') và (ABCD) bằng (ảnh 1)

Gọi \(I = AC \cap BD\). Ta có: \(\left\{ \begin{array}{l}BD \bot AI\\BD \bot AA'\end{array} \right. \Rightarrow BD \bot \left( {AIA'} \right);\quad BD = \left( {BDA'} \right) \cap \left( {ABCD} \right).\)

Do đó góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\) là \(\widehat {AIA'}\).

Ta có: \(\Delta AA'I\) vuông tại \(A\), có:

\(AA' = a;AI = \frac{{a\sqrt 2 }}{2} \Rightarrow A'I = \sqrt {A{{A'}^2} + A{I^2}}  = \frac{{a\sqrt 6 }}{2} \Rightarrow \sin \widehat {AIA'} = \frac{{AA'}}{{A'I}} = \frac{{\sqrt 6 }}{3}\).

Câu 2

A. \(90^\circ \).  
B. \(60^\circ \).   
C. \(30^\circ \). 
D. \(45^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

 Cho hình lập phương ABCD.A'B'C'D', góc giữa hai đường thẳng A'B và B'C là (ảnh 1)

Có \(A'B'//CD\) và \(A'B' = CD\) (chúng cùng song song và bằng \(AB\)).

Do đó \(A'B'CD\) là hình bình hành \( \Rightarrow A'D//B'C\).

Do đó \(\left( {A'B,B'C} \right) = \left( {A'B,A'D} \right) = \widehat {BA'D}\).

Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(A'B = BD = DA'\).

Do đó \(\Delta A'BD\) là tam giác đều. Suy ra \(\widehat {BA'D} = 60^\circ \).

Câu 4

A. Hai biến cố \[A\]và \[B\] không thể cùng xảy ra.
B.  Hai biến cố \[A\]và \[B\] là hai biến cố độc lập.
C.  Hai biến cố \[A\]và \[B\] là hai biến cố xung khắc.
D. Ta có \[P(A \cup B) = P(A) + P(B) = 0,9\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP