Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), \[SA \bot \left( {ABCD} \right)\]. Gọi \(I\) là trung điểm của \[SC\]. Khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng nào?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), \[SA \bot \left( {ABCD} \right)\]. Gọi \(I\) là trung điểm của \[SC\]. Khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng nào?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Do \(O\) là tâm của hình vuông \(ABCD\) nên \(O\) là trung điểm của \(AC\).
Mà \(I\) là trung điểm của \(SC\) nên \(IO\) là đường trung bình của \(\Delta SAC\).
Suy ra \(IO//SA\) mà \(SA \bot \left( {ABCD} \right)\) nên \(OI \bot \left( {ABCD} \right)\).
Do đó \(d\left( {I,\left( {ABCD} \right)} \right) = IO\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Kẻ \(AM \bot BC\) tại \(M\).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(AM \bot BC\)\( \Rightarrow BC \bot \left( {SAM} \right)\)
Ta có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SAM} \right) \bot BC\\\left( {SAM} \right) \cap \left( {SBC} \right) = SM\\\left( {SAM} \right) \cap \left( {ABC} \right) = AM\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,AM} \right)\).
Suy ra góc giữa \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng góc \(\widehat {SMA}\).
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = 45^\circ \).
Xét \(\Delta AMB\) vuông tại \(M\), ta có \(AM = AB.\sin \widehat {ABM} = a\sqrt 2 .\sin 45^\circ = a\).
Xét \(\Delta SAM\) vuông tại \(A,\)\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi \(I = AC \cap BD\). Ta có: \(\left\{ \begin{array}{l}BD \bot AI\\BD \bot AA'\end{array} \right. \Rightarrow BD \bot \left( {AIA'} \right);\quad BD = \left( {BDA'} \right) \cap \left( {ABCD} \right).\)
Do đó góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\) là \(\widehat {AIA'}\).
Ta có: \(\Delta AA'I\) vuông tại \(A\), có:
\(AA' = a;AI = \frac{{a\sqrt 2 }}{2} \Rightarrow A'I = \sqrt {A{{A'}^2} + A{I^2}} = \frac{{a\sqrt 6 }}{2} \Rightarrow \sin \widehat {AIA'} = \frac{{AA'}}{{A'I}} = \frac{{\sqrt 6 }}{3}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau.
B. Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
C. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.