Một hộp chứa 5 viên bi xanh và 3 viên bi đỏ có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời hai viên bi từ hộp. Gọi A là biến cố “Hai viên bi lấy ra đều có màu xanh”, B là biến cố “Hai viên bi lấy ra đều có màu đỏ”. Tính số kết quả thuận lợi cho biến cố \(A \cup B\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
\(A \cup B\) là biến cố: “Hai viên bi lấy ra cùng mầu”.
Do đó \(n\left( {A \cup B} \right) = C_5^2 + C_3^2 = 13\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Do \(O\) là tâm của hình vuông \(ABCD\) nên \(O\) là trung điểm của \(AC\).
Mà \(I\) là trung điểm của \(SC\) nên \(IO\) là đường trung bình của \(\Delta SAC\).
Suy ra \(IO//SA\) mà \(SA \bot \left( {ABCD} \right)\) nên \(OI \bot \left( {ABCD} \right)\).
Do đó \(d\left( {I,\left( {ABCD} \right)} \right) = IO\).
Lời giải
Hướng dẫn giải
Kẻ \(AM \bot BC\) tại \(M\).
Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(AM \bot BC\)\( \Rightarrow BC \bot \left( {SAM} \right)\)
Ta có \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SAM} \right) \bot BC\\\left( {SAM} \right) \cap \left( {SBC} \right) = SM\\\left( {SAM} \right) \cap \left( {ABC} \right) = AM\end{array} \right. \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,AM} \right)\).
Suy ra góc giữa \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng góc \(\widehat {SMA}\).
Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = 45^\circ \).
Xét \(\Delta AMB\) vuông tại \(M\), ta có \(AM = AB.\sin \widehat {ABM} = a\sqrt 2 .\sin 45^\circ = a\).
Xét \(\Delta SAM\) vuông tại \(A,\)\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{a}{a} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).
Câu 3
C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.