Câu hỏi:

26/12/2025 39 Lưu

Một chất điểm chuyển động có phương trình \[s\left( t \right) = {t^3} + \frac{9}{2}{t^2} - 6t\], trong đó \[t\] được tính bằng giây, s được tính bằng mét. Tính gia tốc của chất điểm tại thời điểm vận tốc bằng \[24\]\[\left( {{\rm{m/s}}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Ta có \[v\left( t \right) = s'\left( t \right) = 3{t^2} + 9t - 6\].

Thời điểm để vận tốc bằng \[24\]\[\left( {{\rm{m/s}}} \right)\] là \[3{t^2} + 9t - 6 = 24\]\[ \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  - 5\end{array} \right.\].

Vì \(t > 0\) nên \(t = 2\left( {\rm{s}} \right)\).

Lại có \[a\left( t \right) = s''\left( t \right) = 6t + 9 \Rightarrow a\left( 2 \right) = 21\]\[\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Giá trị sin của góc giữa hai mặt phẳng (BDA') và (ABCD) bằng (ảnh 1)

Gọi \(I = AC \cap BD\). Ta có: \(\left\{ \begin{array}{l}BD \bot AI\\BD \bot AA'\end{array} \right. \Rightarrow BD \bot \left( {AIA'} \right);\quad BD = \left( {BDA'} \right) \cap \left( {ABCD} \right).\)

Do đó góc giữa hai mặt phẳng \(\left( {BDA'} \right)\) và \(\left( {ABCD} \right)\) là \(\widehat {AIA'}\).

Ta có: \(\Delta AA'I\) vuông tại \(A\), có:

\(AA' = a;AI = \frac{{a\sqrt 2 }}{2} \Rightarrow A'I = \sqrt {A{{A'}^2} + A{I^2}}  = \frac{{a\sqrt 6 }}{2} \Rightarrow \sin \widehat {AIA'} = \frac{{AA'}}{{A'I}} = \frac{{\sqrt 6 }}{3}\).

Câu 2

A. \(90^\circ \).  
B. \(60^\circ \).   
C. \(30^\circ \). 
D. \(45^\circ \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

 Cho hình lập phương ABCD.A'B'C'D', góc giữa hai đường thẳng A'B và B'C là (ảnh 1)

Có \(A'B'//CD\) và \(A'B' = CD\) (chúng cùng song song và bằng \(AB\)).

Do đó \(A'B'CD\) là hình bình hành \( \Rightarrow A'D//B'C\).

Do đó \(\left( {A'B,B'C} \right) = \left( {A'B,A'D} \right) = \widehat {BA'D}\).

Vì \(ABCD.A'B'C'D'\) là hình lập phương nên \(A'B = BD = DA'\).

Do đó \(\Delta A'BD\) là tam giác đều. Suy ra \(\widehat {BA'D} = 60^\circ \).

Câu 4

A. Hai biến cố \[A\]và \[B\] không thể cùng xảy ra.
B.  Hai biến cố \[A\]và \[B\] là hai biến cố độc lập.
C.  Hai biến cố \[A\]và \[B\] là hai biến cố xung khắc.
D. Ta có \[P(A \cup B) = P(A) + P(B) = 0,9\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP