Máy đếm xung của một chất phóng xạ, trong lần đo thứ nhất đếm được ΔN1 hạt phân rã trong khoảng thời gian Δt. Lần đo thứ hai sau lần đo thứ nhất là t, máy đếm được ΔN2 phân rã trong cùng khoảng thời gian Δt. Tìm chu kì bán rã của chất phóng xạ. Biết ΔN1 = 100; ΔN2 = 10; t = 1 ngày.
Quảng cáo
Trả lời:
Đáp án đúng là B
Phương pháp giải
Sử dụng định luật phóng xạ về số hạt còn lại sau thời gian t: \(N = {N_0}{2^{ - \frac{t}{T}}}\)
Lời giải
Gọi N1 là số hạt nguyên tử của chất phóng xạ khi đo ở lần thứ nhất. Số phân rã trong khoảng thời gian Δt ở lần đo đầu tiên là: \(\Delta {N_1} = {N_1}\left( {1 - {2^{ - \frac{{\Delta t}}{T}}}} \right)\)
Gọi N2 là số hạt nguyên tử của chất phóng xạ khi đo ở lần thứ hai. Số phân rã trong khoảng thời gian Δt ở lần đo thứ hai là \(\Delta {N_2} = {N_2}\left( {1 - {2^{ - \frac{{\Delta t}}{T}}}} \right)\)
Lập tỉ số: \(\frac{{\Delta {N_1}}}{{\Delta {N_2}}} = \frac{{{N_1}\left( {1 - {2^{ - \frac{{\Delta t}}{T}}}} \right)}}{{{N_2}\left( {1 - {2^{ - \frac{{\Delta t}}{T}}}} \right)}} = \frac{{{N_1}}}{{{N_2}}}\)
Mặt khác, ta có khi đo lần thứ 2 thì số hạt ban đầu của lần 2 chính bằng số hạt còn lại sau khi đo lần 1, tức là: \({N_2} = {N_1}{2^{ - \frac{t}{T}}}\)
Từ đó ta có \(\frac{{\Delta {N_1}}}{{\Delta {N_2}}} = \frac{{{N_1}}}{{{N_2}}} = \frac{{{N_1}}}{{{N_1}{2^{ - \frac{t}{T}}}}} = {2^{\frac{t}{T}}}\)
Vậy chu kì là \(\frac{t}{T} = {\log _2}\frac{{\Delta {N_1}}}{{\Delta {N_2}}} \Rightarrow T = \frac{t}{{{{\log }_2}\frac{{\Delta {N_1}}}{{\Delta {N_2}}}}} = 0,301\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là "1/4 | 0,25"
Phương pháp giải
Vận dụng công thức: \(E = \frac{F}{{|q|}}\)
Định luật Coulomb: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
Lời giải
Theo định luật Coulomb ta có: \(F = k\frac{{\left| {{q_1}{q_2}} \right|}}{{\varepsilon {r^2}}}\)
mặt khác: \(E = \frac{F}{{|q|}}\)
\( \Rightarrow E = k\frac{{|Q|}}{{\varepsilon .{r^2}}}\)
Giả sử môi ô vuông là 1 đơn vị đo.
Ta có:
\( \Rightarrow {E_1} = k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}}\)
\( \Rightarrow {E_2} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
Xét tại điểm \({E_1} = {E_2}\) ứng với \[{r_1} = {r_2}\]
\( \Rightarrow k\frac{{|Q|}}{{{\varepsilon _1}.r_1^2}} = k\frac{{|Q|}}{{{\varepsilon _2}.r_2^2}}\)
\( \Leftrightarrow \frac{1}{{{\varepsilon _1}r_1^2}} = \frac{1}{{{\varepsilon _2}r_2^2}} \Rightarrow \frac{{{\varepsilon _1}}}{{{\varepsilon _2}}} = \frac{{r_2^2}}{{r_1^2}} = 0,25\)
Lời giải
Đáp án đúng là "69/2"
Phương pháp giải
Lập hàm và dùng ứng dụng hàm số để giải bài toán
Lời giải
Gọi giá bán mới là \(x\) triệu đồng với \(x \in \left[ {30;35} \right]\)
Khi đó số xe bán ra là \(400 + \left( {35 - x} \right)100\).
Lợi nhuận thu được là:
\(f\left( x \right) = \left[ {400 + \left( {35 - x} \right)100} \right]\left( {x - 30} \right) = - 100{x^2} + 6900x - 117000 = - 100{\left( {x - \frac{{69}}{2}} \right)^2} + 2025 \le 2025\)
Dấu bằng xảy ra khi \(x = \frac{{69}}{2}\). Vậy giá bán mới \(\frac{{69}}{2}\) triệu đồng thì thu được lợi nhuận cao nhất.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



