(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt bên \(SAB\) là tam giác đều, \(SCD\) là tam giác vuông cân đỉnh \(S\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AB\) và \(CD\).
a) Chứng minh \(SI \bot SJ\).
b) Chứng minh \(SI \bot \left( {SCD} \right),\,\,SJ \bot \left( {SAB} \right)\).
(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt bên \(SAB\) là tam giác đều, \(SCD\) là tam giác vuông cân đỉnh \(S\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AB\) và \(CD\).
a) Chứng minh \(SI \bot SJ\).
b) Chứng minh \(SI \bot \left( {SCD} \right),\,\,SJ \bot \left( {SAB} \right)\).
Quảng cáo
Trả lời:

a) Ta có tam giác \(SAB\) đều cạnh \(a\) nên \(SI = \frac{{a\sqrt 3 }}{2}\).
Tứ giác \(IBCJ\) là hình chữ nhật nên \(IJ = BC = a\).
Tam giác \(SCD\) là tam giác vuông cân đỉnh \(S\) nên \(SJ = \frac{{CD}}{2} = \frac{a}{2}\).
Do đó, \(S{J^2} + S{I^2} = I{J^2}\,\,\left( { = {a^2}} \right)\), suy ra tam giác \(SIJ\) vuông tại \(S\).
Vậy \(SI \bot SJ\).
b) Vì tam giác \(SCD\) là tam giác cân đỉnh \(S\) nên \(SJ \bot CD\).
Do \(AB\,{\rm{//}}\,CD\) nên \(SJ \bot AB\) mà \(SI \bot SJ\) nên \(SJ \bot \left( {SAB} \right)\).
Chứng minh tương tự ta có \(SI \bot \left( {SCD} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \({\log _9}10 = {\log _{{3^2}}}\left( {2 \cdot 5} \right) = \frac{1}{2}{\log _3}\left( {2 \cdot 5} \right) = \frac{1}{2}\left( {{{\log }_3}2 + {{\log }_3}5} \right)\).
Áp dụng công thức đổi cơ số ta có \({\log _2}3 = \frac{{{{\log }_3}3}}{{{{\log }_3}2}} = \frac{1}{{{{\log }_3}2}}\), suy ra \({\log _3}2 = \frac{1}{{{{\log }_2}3}} = \frac{1}{a}\).
Tương tự \({\log _2}5 = \frac{{{{\log }_3}5}}{{{{\log }_3}2}} \Rightarrow {\log _3}5 = {\log _2}5 \cdot {\log _3}2 = b \cdot \frac{1}{a} = \frac{b}{a}\).
Do đó, \({\log _9}10 = \frac{1}{2}\left( {\frac{1}{a} + \frac{b}{a}} \right) = \frac{{1 + b}}{{2a}}\).
Câu 2
Lời giải
Đáp án đúng là: A
Hình chóp hình chóp \(S.ABCD\) có mặt đáy là \(\left( {ABCD} \right)\). Do đó \(SA \bot \left( {ABCD} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hình lập phương \[ABCD.A'B'C'D'\] (tham khảo hình vẽ bên dưới). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/23-1766721502.png)