Cho hình chóp \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Số đo của góc giữa hai đường thẳng \(SB\) và \(CD\) bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C

Tứ giác \(ABCD\) có \(AB = BC = CD = DA = a\) nên nó là hình thoi.
Suy ra \(CD{\rm{//}}AB\). Do đó \(\left( {SB,\,\,CD} \right) = \left( {SB,\,\,AB} \right)\).
Tam giác \(SAB\) có \(SA = AB = SB = a\) nên \(SAB\) là tam giác đều, do đó \(\widehat {SBA} = 60^\circ \).
Vậy \(\left( {SB,\,\,CD} \right) = \left( {SB,\,\,AB} \right) = \widehat {SBA} = 60^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét \(\Delta SAB\) vuông tại \(A,\) đường cao \(AH.\)
Ta có \(S{A^2} = SH \cdot SB \Rightarrow \frac{{SH}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}}\left( 1 \right).\)
Xét \(\Delta SAD\) vuông tại \(A,\) đường cao \(AK.\)
Ta có \(S{A^2} = SK \cdot SD \Rightarrow \frac{{SK}}{{SD}} = \frac{{S{A^2}}}{{S{D^2}}}\left( 2 \right).\)
Mà \(\left\{ \begin{array}{l}S{B^2} = S{A^2} + A{B^2}\\S{D^2} = S{A^2} + A{D^2}\\AB = AD\end{array} \right. \Rightarrow SB = SD\left( 3 \right).\)
Từ \(\left( 1 \right),\left( 2 \right)\) và \(\left( 3 \right)\)suy ra \(\frac{{SH}}{{SB}} = \frac{{SK}}{{SD}} \Rightarrow HK{\rm{//}}BD.\)
Lại có \(BD \bot AC\) (tính chất hình thoi).
Mà \(SA \bot \left( {ABCD} \right),BD \subset \left( {ABCD} \right) \Rightarrow BD \bot SA.\)
Suy ra \(BD \bot \left( {SAC} \right)\) mà \(HK{\rm{//}}BD\) nên \(HK \bot \left( {SAC} \right).\)
Lời giải
a) \[P = {\log _{\sqrt a }}{b^3} \cdot {\log _b}{a^4} = {\log _{{a^{\frac{1}{2}}}}}{b^3} \cdot {\log _b}{a^4} = \frac{3}{{\frac{1}{2}}} \cdot 4 \cdot {\log _a}b \cdot \frac{1}{{{{\log }_a}b}} = 24.\]
b) \[Q = {\log _{{a^2}}}\left( {{a^{10}}{b^2}} \right) + {\log _{\sqrt a }}\left( {\frac{a}{{\sqrt b }}} \right) + {\log _{\sqrt[3]{b}}}{b^{ - 2}}\]
\[ = \frac{1}{2}\left[ {{{\log }_a}{a^{10}} + {{\log }_a}{b^2}} \right] + 2\left[ {{{\log }_a}a - {{\log }_a}\sqrt b } \right] + 3 \cdot \left( { - 2} \right){\log _b}b\] \[ = \frac{1}{2}\left[ {10 + 2{{\log }_a}b} \right] + 2\left[ {1 - \frac{1}{2}{{\log }_a}b} \right] - 6 = 1.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.