(1,0 điểm) Tính đạo hàm của các hàm số sau:
a) \(y = \frac{{{x^2} + x}}{{x - 2}}\);
b) \[y = x \cdot \sqrt {{x^2} - 2x} \].
(1,0 điểm) Tính đạo hàm của các hàm số sau:
a) \(y = \frac{{{x^2} + x}}{{x - 2}}\);
b) \[y = x \cdot \sqrt {{x^2} - 2x} \].
Quảng cáo
Trả lời:
a) \(y' = \frac{{\left( {2x + 1} \right)\left( {x - 2} \right) - \left( {{x^2} + x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x - 2}}{{{{\left( {x - 2} \right)}^2}}}\).
b) \[y = x \cdot \sqrt {{x^2} - 2x} \Rightarrow y' = \sqrt {{x^2} - 2x} + x \cdot \frac{{2x - 2}}{{2\sqrt {{x^2} - 2x} }} = \frac{{{x^2} - 2x + {x^2} - x}}{{\sqrt {{x^2} - 2x} }} = \frac{{2{x^2} - 3x}}{{\sqrt {{x^2} - 2x} }}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \({\log _{{a^3}}}a = \frac{1}{3}{\log _a}a = \frac{1}{3}\).
Câu 2
Lời giải
Đáp án đúng là: A
Điều kiện để hàm số có nghĩa là \[x > 0\]. Vậy tập xác định là \(D = \left( {0; + \infty } \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.