Câu hỏi:

26/12/2025 10 Lưu

Phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) có số nghiệm nguyên là         

A. \(2\).                    
B. \(3\).                    
C. \(4\). 
D. \(5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có log12x3log124x34x3>0x7x>33<x7

Vì x3<x7x4;  5;6;7

Vậy bất phương trình đã cho có tất cả 4 nghiệm nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \( - 6\).                
B. \(6\).                    
C. \(5\). 
D. \( - 5\).

Lời giải

Đáp án đúng là: A

Ta có \(y' = {\left( {{x^6}} \right)^\prime } = 6{x^5}\). Khi đó \(y'\left( { - 1} \right) = 6 \cdot {\left( { - 1} \right)^5} = - 6\).

Câu 2

A. Có đúng hai đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\).
B. Có vô số đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\).
C. Không tồn tại đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\)
D. Có đúng một đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\).

Lời giải

Đáp án đúng là: D

Trong không gian, cho điểm \(A\) và mặt phẳng \(\left( P \right)\). Khi đó, có đúng một đường thẳng đi qua \(A\) và vuông góc với \(\left( P \right)\).

Câu 3

A. Hàm số nghịch biến trên \[\mathbb{R}\].             

B. Hàm số đồng biến trên \[\mathbb{R}\].             

C. Hàm số nghịch biến trên \(\left( {0; + \infty } \right).\)                          
D. Hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(1 + {\log _4}a\).                               
B. \(1 - {\log _4}a\).                              
C. \({\log _4}a\).     
D. \(4{\log _4}a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP