Cho \(k,n\) là các số nguyên dương với \(k \le n\). Trong các phát biểu dưới đây, phát biểu nào sai?
Cho \(k,n\) là các số nguyên dương với \(k \le n\). Trong các phát biểu dưới đây, phát biểu nào sai?
A. \(C_n^k = C_n^{n - k}\);
B.\(C_n^k = \frac{{A_n^k}}{{\left( {n - k} \right)!}}\);
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(C_n^k = \frac{{A_n^k}}{{k!}} = \frac{{n!}}{{k!\left( {n - k} \right)!}}\), do đó đáp án B sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do \(BH\) là đường cao nên \(AC \bot BH\) nên đường thẳng \(AC\)có một vectơ chỉ phương:
\(\overrightarrow {{u_{AC}}} = \overrightarrow {{n_{BH}}} = \left( {5; - 2} \right)\).
Do đó, một vectơ pháp tuyến của đường thẳng \(AC\) là: \(\overrightarrow {{n_{AC}}} = \left( {2;5} \right)\).
Đường thẳng \(AC\) đi qua điểm \(A\left( { - 1;2} \right)\) có phương trình là:
\(2\left( {x + 1} \right) + 5\left( {y - 2} \right) = 0 \Leftrightarrow 2x + 5y - 8 = 0\).
Do đường thẳng \(AC\) giao đường thẳng \(CM\) tại \(C\) nên tọa độ của \(C\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}2x + 5y - 8 = 0\\5x + 7y - 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 0\end{array} \right. \Rightarrow C\left( {4;0} \right)\).
Đặt tọa độ điểm \(B\left( {a;b} \right)\). Do \(B \in BH\) nên \(5a - 2b - 4 = 0\)
Vì \(M\) là trung điểm của \(AB\) nên\(M\left( {\frac{{ - 1 + a}}{2};\frac{{2 + b}}{2}} \right) \in CM\)
\( \Leftrightarrow 5.\frac{{ - 1 + a}}{2} + 7.\frac{{2 + b}}{2} - 20 = 0 \Leftrightarrow 5a + 7b - 31 = 0\).
Tọa độ điểm \(B\) là nghiệm của hệ: \(\left\{ \begin{array}{l}5a - 2b - 4 = 0\\5a + 7b - 31 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right. \Leftrightarrow B\left( {2;3} \right)\).
Đường thẳng \(BC\) có vectơ chỉ phương là: \(\overrightarrow {BC} = \left( {2; - 3} \right)\) nên nó có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;2} \right)\).
Phương trình đường thẳng \(BC\) là: \(3\left( {x - 2} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 3x + 2y - 12 = 0\).
Lời giải
Ta có : \(C_n^0 + C_n^1 + C_n^2 = 11 \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = 11\,\,\left( {n \ge 2} \right)\)
\( \Leftrightarrow 1 + n + \frac{{n\left( {n - 1} \right)}}{2} = 11\) \( \Leftrightarrow \left[ \begin{array}{l}n = 4\\n = - 5\end{array} \right.\) .
Do đó có \(n = 4\) thỏa mãn điều kiện.
Khi đó:
\({\left( {{x^3} + \frac{1}{{{x^2}}}} \right)^4} = {\left( {{x^3}} \right)^4} + 4.{\left( {{x^3}} \right)^3}.\frac{1}{{{x^2}}} + 6.{\left( {{x^3}} \right)^2}.{\left( {\frac{1}{{{x^2}}}} \right)^2} + 4.{x^3}.{\left( {\frac{1}{{{x^2}}}} \right)^3} + {\left( {\frac{1}{{{x^2}}}} \right)^4}\)
\( = {x^{12}} + 4{x^7} + 6{x^2} + \frac{4}{{{x^2}}} + \frac{1}{{{x^8}}}\).
Vậy hệ số của \({x^2}\) trong khai triển đã cho là 6.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(d\left( {A,\Delta } \right) = \frac{{\left| {d{x_A} + e{y_A} + f} \right|}}{{\sqrt {{d^2} + {e^2}} }}\);
B. \(d\left( {A,\Delta } \right) = \frac{{\left| {dx + ey + f} \right|}}{{\sqrt {{d^2} + {e^2}} }}\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.