Câu hỏi:

27/12/2025 4 Lưu

Cho tam giác \(ABC\) với tọa độ đỉnh \(C\left( {4; - 1} \right)\), đường cao kẻ từ đỉnh \(A\) là \(\left( {{d_1}} \right):2x - 3y + 12 = 0\) và đường trung tuyến kẻ từ đỉnh \(A\) là \(\left( {{d_2}} \right):2x + 3y = 0\). Lập phương trình tổng quát các đường thẳng \(AB,AC,BC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác \(ABC\) với tọa độ đỉnh \(C\left( {4; - 1} \right)\), đường cao kẻ từ đỉnh \(A\) là \(\left( {{d_1}} \right):2x - 3y + 12 = 0\) và đường trung tuyến kẻ từ đỉnh \(A\) là \(\left( {{d_2}} \right):2x + 3y = 0\). (ảnh 1)

Vì \(BC\) vuông góc với \(\left( {{d_1}} \right)\) nên đường thẳng \(BC\) có vectơ pháp tuyến \(\overrightarrow {{n_{BC}}}  = \left( {3;2} \right)\).

Phương trình đường thẳng \(BC\) là: \(3\left( {x - 4} \right) + 2\left( {y + 1} \right) = 0 \Leftrightarrow 3x + 2y - 10 = 0\).

Điểm \(A\) là giao điểm của hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) nên ta có tọa độ điểm \(A\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}2x - 3y + 12 = 0\\2x + 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y = 2\end{array} \right. \Rightarrow A\left( { - 3;2} \right)\).

Đường thẳng \(AC\) nhận vectơ \(\overrightarrow {AC}  = \left( {4 + 3; - 1 - 2} \right) = \left( {7; - 3} \right)\) là một vectơ chỉ phương, do đó, nó có một vectơ pháp tuyến là \(\overrightarrow {{n_{AC}}}  = \left( {3;7} \right)\).

Phương trình đường thẳng \(AC\) là:

\(3\left( {x + 3} \right) + 7\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 7y - 5 = 0\).

Gọi \(M\) là trung điểm của \(BC\), khi đó điểm \(M\) là giao điểm của \({d_2}\) và \(BC\)

Tọa độ điểm \(M\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}3x + 2y - 10 = 0\\2x + 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 4\end{array} \right. \Rightarrow M\left( {6; - 4} \right)\).

Do \(M\) là trung điểm của \(BC\) nên ta có:

\(\left\{ \begin{array}{l}{x_B} = 2.6 - 4 = 8\\{y_B} = 2.( - 4) - ( - 1) =  - 7\end{array} \right. \Rightarrow B\left( {8; - 7} \right)\).

Đường thẳng \(AB\) nhận vectơ \(\overrightarrow {AB}  = \left( {11; - 9} \right)\) là vectơ chỉ phương và nhận vectơ \(\overrightarrow {{n_{AB}}}  = \left( {9;11} \right)\) là vectơ pháp tuyến.

Do đó, phương trình của đường thẳng \(AB\) là:

\(9\left( {x - 8} \right) + 11\left( {y + 7} \right) = 0 \Leftrightarrow 9x + 11y + 5 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Công việc có thể được thực hiện bằng \(m.n\) cách;

B. Công việc có thể được thực hiện bằng \(\frac{1}{2}.m.n\) cách;

C. Công việc có thể được thực hiện bằng \(m + n\) cách;

D. Công việc có thể thực hiện bằng \(\frac{1}{2}\left( {m + n} \right)\) cách.

Lời giải

Đáp án đúng là: A

Vì công việc được tiến hành theo hai công đoạn \(A\) và \(B\) nên theo quy tắc nhân ta có công việc có thể được thực hiện bằng \(m.n\) cách.

Câu 2

A. \[\frac{{n!}}{{k!}}\];                                   
B. \[\frac{{n!}}{{k!\left( {n - k} \right)!}}\];                                  
C. \[\frac{{n!}}{{\left( {n - k} \right)!}}\];        
D. \[k!\left( {n - k} \right)!\].

Lời giải

Đáp án đúng là: C

Một chỉnh hợp chập \[k\] của \[n\] là một cách sắp xếp có thứ tự \[k\] phần tử từ một tập hợp \[n\] phần tử (với \[k,\,n\] là các số tự nhiên, \[1 \le k \le n\]).

Số các chỉnh hợp chập \[k\] của \[n\], kí hiệu là \[A_n^k\] và được tính bằng công thức: \[A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}}\].

Câu 3

A. \(\left( {0;\,\,4} \right)\);                              
B. \(\left( {0;\,\,2} \right)\);  
C. \(\left( {2;\,\,0} \right)\);                     
D. \(\left( {4;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 7;                          
B. 12;                            
C. 81;                         
D. 64.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 17;                        
B. 23;                            
C. 391;                       
D. 40.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP