Câu hỏi:

28/12/2025 5 Lưu

Một bể cá hình cầu có bán kính bằng \(9cm.\) Người ta cần đổ vào bể một lượng nước chiếm \(\frac{2}{3}\) thể tích bể. Hỏi cần đổ bao nhiêu lít nước ? (biết rằng \(1l = 1000c{m^3},\pi  = 3,14)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Một bể cá hình cầu có bán kính bằng \(9cm.\) Người ta cần đổ vào bể một lượng nước chiếm (ảnh 1)

Thể tích bể cá cảnh là : \(\frac{4}{3}\pi {R^3} = \frac{4}{3}.3,{14.9^3} = 3052,08(c{m^3})\)

Thể tích lượng nước cần đổ là :\(\frac{2}{3}.3052,08 = 2034,72(c{m^3}) = 2,03472\) lít

Vậy người ta cần đổ \(2,03472\) lít.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)\(\left\{ {\begin{array}{*{20}{c}}{x + y = 3}\\{2x - y = 9}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3x = 12}\\{x + y = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 4}\\{y =  - 1}\end{array}} \right.} \right.} \right.\)           

b) \({x^2} + 5x + 4 = 0\)

Ta có : \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ {\begin{array}{*{20}{c}}{{x_1} =  - 1}\\{{x_2} =  - 4}\end{array}} \right.\)

Lời giải

Gọi giá tiền của chiếc điện thoại mà An được thưởng và giá tiền phụ kiện lần lượt là \(x\)và \(y\) (đồng), \(x > 0,y > 0.\)

Theo đề bài ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y = 11500000\,\,\,\,\,}\\{x + 0,7y = 11050000}\end{array}} \right.\)

Giải hpt ta được \(\left\{ {\begin{array}{*{20}{c}}{x = 10000000}\\{y = 1500000}\end{array}} \right.\) (TMĐK)

Vậy giá tiền của chiếc điện thoại mà AN được thưởng là \[10{\rm{ }}000{\rm{ }}000\] đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP