Câu hỏi:

28/12/2025 15 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác đều có cạnh bằng 1 và cạnh bên \(AA' = \sqrt 2 \). Tính khoảng cách giữa hai đường thẳng \(A'B\)\(B'C\) (kết quả cuối cùng được làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,92

Đáp án: 0,92.

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \( (ảnh 1)

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.

Ta tìm được \(A'\left( {0;0;\sqrt 2 } \right)\), \(C\left( {1;0;0} \right)\).

\({x_B} = AH = \frac{1}{2}AC = \frac{1}{2}\).

\({y_B} = BH = \frac{{AC\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\).

Suy ra \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\).

Do đó \(B'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};1} \right)\) (Do \(B\) là hình chiếu của \(B'\) lên \(\left( {Oxy} \right)\)).

\(A'B\) đi qua điểm \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\) và có 1 vectơ chỉ phương là \(\overrightarrow {A'B}  = \left( {\frac{1}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 2 } \right)\).

\(B'C\) đi qua điểm \(C\left( {1;0;0} \right)\) và có 1 vectơ chỉ phương là \(\overrightarrow {B'C}  = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - 1} \right)\).

\(d\left( {A'B,B'C} \right) = \frac{{\left| {\left[ {\overrightarrow {A'B} ,\overrightarrow {B'C} } \right] \cdot \overrightarrow {BC} } \right|}}{{\left| {\left[ {\overrightarrow {A'B} ,\overrightarrow {B'C} } \right]} \right|}} \approx 0,92\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 33

Minh họa lại và mở rộng mô hình như hình vẽ như dưới đây

Trong công viên nước, người ta xây dựng một máng t (ảnh 2)

Từ dữ kiện của bài toán ta có: \(\overrightarrow {BA}  = \left( { - 5; - 12;7} \right)\); \(\overrightarrow {BC}  = \left( {12; - 7; - 5} \right)\); \(\overrightarrow {AC}  = \left( {17;5; - 12} \right)\).

Suy ra: \(BA = BC = \sqrt {218} \;;\;AC = \sqrt {458} \). Có \(\Delta ABC\) cân tại \(B\) nên bán kính đường tròn ngoại tiếp của \(\Delta ABC\) là \(R = \frac{{B{C^2}}}{{2AH}} = \frac{{B{C^2}}}{{2\sqrt {B{A^2} - \frac{{A{C^2}}}{4}} }} = \frac{{218}}{{2\sqrt {218 - \frac{{458}}{4}} }} = \frac{{218}}{{3\sqrt {46} }}\).

Mặt khác \(\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{\left( { - 5} \right).12 + \left( { - 12} \right).\left( { - 7} \right) + 7.\left( { - 5} \right)}}{{\sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 12} \right)}^2} + {7^2}} .\sqrt {{{12}^2} + {{\left( { - 7} \right)}^2} + {{\left( { - 5} \right)}^2}} }} =  - \frac{{11}}{{218}}\).

Hay \(\cos B =  - \frac{{11}}{{218}}\). Suy ra \(B \approx 1,6213\;\left( {{\rm{rad}}} \right)\).

Vì cung lớn  có số đo \[2B\] nên cung nhỏ  có số đo là

\(\alpha  = 2\pi  - 2B \approx 2\pi  - 2 \cdot 1,6213\)\(\left( {{\rm{rad}}} \right)\).

Vậy máng trượt có độ dài là \(l = \alpha R \approx \left( {2\pi  - 2 \cdot 1,6213} \right).\frac{{218}}{{3\sqrt {46} }} \approx 32,5772\;\left( {\rm{m}} \right) \approx 33\left( {\rm{m}} \right)\).

Câu 2

a) [NB] Hàm số đã cho có tập xác định là \[D = \mathbb{R}\].
Đúng
Sai
b) [TH] Hàm số đã cho đạt cực tiểu tại điểm \[x = 2\].
Đúng
Sai
c) [TH] Giá trị lớn nhất của hàm số trên đoạn \[\left[ {1;10} \right]\] bằng 6. 
Đúng
Sai
d) [VD,VDC] Đường thẳng \[d:y - 1 = 0\] cắt đồ thị \[\left( H \right)\] tại hai điểm \[A\], \[B\] và gọi \[M\] là điểm cực tiểu của \[\left( H \right)\]. Khi đó tam giác \[AMB\] vuông tại \[M\].
Đúng
Sai

Lời giải

Chọn a) Đúng | b) Đúng | c) Sai | d) Đúng.

a)  Ta có: \[{x^2} - 4x + 5 > 0\] với \[\forall x \in \mathbb{R}\] nên hàm số đã cho có tập xác định là \[D = \mathbb{R}\].

b) \[y' = \frac{{2x - 4}}{{\left( {{x^2} - 4x + 5} \right)\ln 2}}\].

\[y' = 0 \Leftrightarrow x = 2\].

Vì \[\left( {{x^2} - 4x + 5} \right)\ln 2 > 0\] với \[\forall x \in \mathbb{R}\]nên:

Với \[x < 2\] thì \[y' < 0\] và \[x > 2\] thì \[y' > 0\] nên hàm số đã cho đạt cực tiểu tại điểm \[x = 2\].

c) Ta có:

\[y\left( 2 \right) = 0\].

\[y\left( 1 \right) = 1\].

\[y\left( {10} \right) = {\log _2}65 > 6\].

Vậy giá trị lớn nhất của hàm số trên đoạn \[\left[ {1;10} \right]\] bằng \[{\log _2}65\].

d) \[d:y - 1 = 0 \Leftrightarrow y = 1\].

Xét phương trình: \[{\log _2}\left( {{x^2} - 4x + 5} \right) = 1 \Leftrightarrow {x^2} - 4x + 5 = 2 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\]

\[ \Rightarrow A\left( {3;1} \right)\], \[B\left( {1;1} \right)\].

Điểm cực tiểu của \[\left( H \right)\] là \[M\left( {2;0} \right)\].

Ta có:

\[\overrightarrow {MA}  = \left( {1;1} \right)\].

\[\overrightarrow {MB}  = \left( { - 1;1} \right)\].

Vì \[\overrightarrow {MA} .\overrightarrow {MB}  = 0\] nên tam giác \[AMB\]vuông tại \[M\].

Câu 6

A. \( - 64\).                
B. \(64\).                  
C. \( - 8\).                             
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP