Một hộ gia đình sản xuất chiếu cói, mỗi ngày sản xuất được \[x\] chiếc chiếu \[(0 \le x \le 20)\]. Chi phí biên để sản xuất \[x\] chiếc chiếu (nghìn đồng) cho bởi hàm số \[C'(x) = 3{{\rm{x}}^2} - 4x + 10\]( giả sử hàm chi phí là \[C(x)\] thì đạo hàm \[C'(x)\] gọi là chi phí biên, biểu thị tốc độ thay đổi tức thời của chi phí đối với số lượng đơn vị hàng hóa được sản xuất). Biết rằng chi phí cố định ban đầu để sản xuất là 500 nghìn đồng. Giả sử gia đình này bán hết chiếu mỗi ngày với giá 270 nghìn đồng/chiếc chiếu. Tính lợi nhuận tối đa theo đơn vị nghìn đồng mà gia đình đó thu được?
Một hộ gia đình sản xuất chiếu cói, mỗi ngày sản xuất được \[x\] chiếc chiếu \[(0 \le x \le 20)\]. Chi phí biên để sản xuất \[x\] chiếc chiếu (nghìn đồng) cho bởi hàm số \[C'(x) = 3{{\rm{x}}^2} - 4x + 10\]( giả sử hàm chi phí là \[C(x)\] thì đạo hàm \[C'(x)\] gọi là chi phí biên, biểu thị tốc độ thay đổi tức thời của chi phí đối với số lượng đơn vị hàng hóa được sản xuất). Biết rằng chi phí cố định ban đầu để sản xuất là 500 nghìn đồng. Giả sử gia đình này bán hết chiếu mỗi ngày với giá 270 nghìn đồng/chiếc chiếu. Tính lợi nhuận tối đa theo đơn vị nghìn đồng mà gia đình đó thu được?
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 7900.
\[C(x) = \int {C'(x)d{\rm{x}} = } \int {(3{{\rm{x}}^2} - 4x + 10} )d{\rm{x}} = {{\rm{x}}^3} - 2{x^2} + 10x + C\]
Ta có \[C(0) = 500 \Rightarrow C = 500 \Rightarrow C(x) = {x^3} - 2{{\rm{x}}^2} + 10{\rm{x}} + 500\]
\[L(x) = 270{\rm{x}} - ({x^3} - 2{{\rm{x}}^2} + 10{\rm{x}} + 500) = - {x^3} + 2{x^2} + 260{\rm{x}} - 500 \Rightarrow L'(x) = - 3{{\rm{x}}^2} + 4{\rm{x}} + 260\].
\[L'(x) = 0 \Leftrightarrow x = 10;x = - \frac{{26}}{3}\]
Vì \[0 \le x \le 20\] nên có \[L(0) = 500;L(10) = 1400;L(20) = 7900\].
Vậy lợi nhuận tối đa là 7900 nghìn đồng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 0,92.

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.
Ta tìm được \(A'\left( {0;0;\sqrt 2 } \right)\), \(C\left( {1;0;0} \right)\).
\({x_B} = AH = \frac{1}{2}AC = \frac{1}{2}\).
\({y_B} = BH = \frac{{AC\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\).
Suy ra \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\).
Do đó \(B'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};1} \right)\) (Do \(B\) là hình chiếu của \(B'\) lên \(\left( {Oxy} \right)\)).
\(A'B\) đi qua điểm \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\) và có 1 vectơ chỉ phương là \(\overrightarrow {A'B} = \left( {\frac{1}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 2 } \right)\).
\(B'C\) đi qua điểm \(C\left( {1;0;0} \right)\) và có 1 vectơ chỉ phương là \(\overrightarrow {B'C} = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - 1} \right)\).
\(d\left( {A'B,B'C} \right) = \frac{{\left| {\left[ {\overrightarrow {A'B} ,\overrightarrow {B'C} } \right] \cdot \overrightarrow {BC} } \right|}}{{\left| {\left[ {\overrightarrow {A'B} ,\overrightarrow {B'C} } \right]} \right|}} \approx 0,92\).
Lời giải
Đáp án: 33
Minh họa lại và mở rộng mô hình như hình vẽ như dưới đây

Từ dữ kiện của bài toán ta có: \(\overrightarrow {BA} = \left( { - 5; - 12;7} \right)\); \(\overrightarrow {BC} = \left( {12; - 7; - 5} \right)\); \(\overrightarrow {AC} = \left( {17;5; - 12} \right)\).
Suy ra: \(BA = BC = \sqrt {218} \;;\;AC = \sqrt {458} \). Có \(\Delta ABC\) cân tại \(B\) nên bán kính đường tròn ngoại tiếp của \(\Delta ABC\) là \(R = \frac{{B{C^2}}}{{2AH}} = \frac{{B{C^2}}}{{2\sqrt {B{A^2} - \frac{{A{C^2}}}{4}} }} = \frac{{218}}{{2\sqrt {218 - \frac{{458}}{4}} }} = \frac{{218}}{{3\sqrt {46} }}\).
Mặt khác \(\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{\left( { - 5} \right).12 + \left( { - 12} \right).\left( { - 7} \right) + 7.\left( { - 5} \right)}}{{\sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 12} \right)}^2} + {7^2}} .\sqrt {{{12}^2} + {{\left( { - 7} \right)}^2} + {{\left( { - 5} \right)}^2}} }} = - \frac{{11}}{{218}}\).
Hay \(\cos B = - \frac{{11}}{{218}}\). Suy ra \(B \approx 1,6213\;\left( {{\rm{rad}}} \right)\).
Vì cung lớn có số đo \[2B\] nên cung nhỏ có số đo là
\(\alpha = 2\pi - 2B \approx 2\pi - 2 \cdot 1,6213\)\(\left( {{\rm{rad}}} \right)\).
Vậy máng trượt có độ dài là \(l = \alpha R \approx \left( {2\pi - 2 \cdot 1,6213} \right).\frac{{218}}{{3\sqrt {46} }} \approx 32,5772\;\left( {\rm{m}} \right) \approx 33\left( {\rm{m}} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

