Câu hỏi:

28/12/2025 5 Lưu

Một hộ gia đình sản xuất chiếu cói, mỗi ngày sản xuất được \[x\] chiếc chiếu \[(0 \le x \le 20)\]. Chi phí biên để sản xuất \[x\] chiếc chiếu (nghìn đồng) cho bởi hàm số \[C'(x) = 3{{\rm{x}}^2} - 4x + 10\]( giả sử hàm chi phí là \[C(x)\] thì đạo hàm \[C'(x)\] gọi là chi phí biên, biểu thị tốc độ thay đổi tức thời của chi phí đối với số lượng đơn vị hàng hóa được sản xuất). Biết rằng chi phí cố định ban đầu để sản xuất là 500 nghìn đồng. Giả sử gia đình này bán hết chiếu mỗi ngày với giá 270 nghìn đồng/chiếc chiếu. Tính lợi nhuận tối đa theo đơn vị nghìn đồng mà gia đình đó thu được?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

7900

Đáp án: 7900.

\[C(x) = \int {C'(x)d{\rm{x}} = } \int {(3{{\rm{x}}^2} - 4x + 10} )d{\rm{x}} = {{\rm{x}}^3} - 2{x^2} + 10x + C\]

Ta có \[C(0) = 500 \Rightarrow C = 500 \Rightarrow C(x) = {x^3} - 2{{\rm{x}}^2} + 10{\rm{x}} + 500\]

\[L(x) = 270{\rm{x}} - ({x^3} - 2{{\rm{x}}^2} + 10{\rm{x}} + 500) =  - {x^3} + 2{x^2} + 260{\rm{x}} - 500 \Rightarrow L'(x) =  - 3{{\rm{x}}^2} + 4{\rm{x}} + 260\].

\[L'(x) = 0 \Leftrightarrow x = 10;x =  - \frac{{26}}{3}\]

Vì \[0 \le x \le 20\] nên có \[L(0) = 500;L(10) = 1400;L(20) = 7900\].

Vậy lợi nhuận tối đa là 7900 nghìn đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 0,92.

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \( (ảnh 1)

Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ.

Ta tìm được \(A'\left( {0;0;\sqrt 2 } \right)\), \(C\left( {1;0;0} \right)\).

\({x_B} = AH = \frac{1}{2}AC = \frac{1}{2}\).

\({y_B} = BH = \frac{{AC\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{2}\).

Suy ra \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\).

Do đó \(B'\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};1} \right)\) (Do \(B\) là hình chiếu của \(B'\) lên \(\left( {Oxy} \right)\)).

\(A'B\) đi qua điểm \(B\left( {\frac{1}{2};\frac{{\sqrt 3 }}{2};0} \right)\) và có 1 vectơ chỉ phương là \(\overrightarrow {A'B}  = \left( {\frac{1}{2};\frac{{\sqrt 3 }}{2}; - \sqrt 2 } \right)\).

\(B'C\) đi qua điểm \(C\left( {1;0;0} \right)\) và có 1 vectơ chỉ phương là \(\overrightarrow {B'C}  = \left( {\frac{1}{2}; - \frac{{\sqrt 3 }}{2}; - 1} \right)\).

\(d\left( {A'B,B'C} \right) = \frac{{\left| {\left[ {\overrightarrow {A'B} ,\overrightarrow {B'C} } \right] \cdot \overrightarrow {BC} } \right|}}{{\left| {\left[ {\overrightarrow {A'B} ,\overrightarrow {B'C} } \right]} \right|}} \approx 0,92\).

Lời giải

Đáp án: 33

Minh họa lại và mở rộng mô hình như hình vẽ như dưới đây

Trong công viên nước, người ta xây dựng một máng t (ảnh 2)

Từ dữ kiện của bài toán ta có: \(\overrightarrow {BA}  = \left( { - 5; - 12;7} \right)\); \(\overrightarrow {BC}  = \left( {12; - 7; - 5} \right)\); \(\overrightarrow {AC}  = \left( {17;5; - 12} \right)\).

Suy ra: \(BA = BC = \sqrt {218} \;;\;AC = \sqrt {458} \). Có \(\Delta ABC\) cân tại \(B\) nên bán kính đường tròn ngoại tiếp của \(\Delta ABC\) là \(R = \frac{{B{C^2}}}{{2AH}} = \frac{{B{C^2}}}{{2\sqrt {B{A^2} - \frac{{A{C^2}}}{4}} }} = \frac{{218}}{{2\sqrt {218 - \frac{{458}}{4}} }} = \frac{{218}}{{3\sqrt {46} }}\).

Mặt khác \(\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{\left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{\left( { - 5} \right).12 + \left( { - 12} \right).\left( { - 7} \right) + 7.\left( { - 5} \right)}}{{\sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 12} \right)}^2} + {7^2}} .\sqrt {{{12}^2} + {{\left( { - 7} \right)}^2} + {{\left( { - 5} \right)}^2}} }} =  - \frac{{11}}{{218}}\).

Hay \(\cos B =  - \frac{{11}}{{218}}\). Suy ra \(B \approx 1,6213\;\left( {{\rm{rad}}} \right)\).

Vì cung lớn  có số đo \[2B\] nên cung nhỏ  có số đo là

\(\alpha  = 2\pi  - 2B \approx 2\pi  - 2 \cdot 1,6213\)\(\left( {{\rm{rad}}} \right)\).

Vậy máng trượt có độ dài là \(l = \alpha R \approx \left( {2\pi  - 2 \cdot 1,6213} \right).\frac{{218}}{{3\sqrt {46} }} \approx 32,5772\;\left( {\rm{m}} \right) \approx 33\left( {\rm{m}} \right)\).

Câu 3

a) [NB] Hàm số đã cho có tập xác định là \[D = \mathbb{R}\].
Đúng
Sai
b) [TH] Hàm số đã cho đạt cực tiểu tại điểm \[x = 2\].
Đúng
Sai
c) [TH] Giá trị lớn nhất của hàm số trên đoạn \[\left[ {1;10} \right]\] bằng 6. 
Đúng
Sai
d) [VD,VDC] Đường thẳng \[d:y - 1 = 0\] cắt đồ thị \[\left( H \right)\] tại hai điểm \[A\], \[B\] và gọi \[M\] là điểm cực tiểu của \[\left( H \right)\]. Khi đó tam giác \[AMB\] vuông tại \[M\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - 64\).                
B. \(64\).                  
C. \( - 8\).                             
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP