Câu hỏi:

29/12/2025 411 Lưu

Trong mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( C \right)\) tâm \(O\), bán kính bằng \(1\). Gọi \(T\) là tập hợp tất cả các điểm \(M\left( {x;y} \right)\), trong đó \(x,y \in \mathbb{Z}\), sao cho từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\) (\(A\), \(B\) là các tiếp điểm) thỏa mãn \(\widehat {AMB} \ge 60^\circ \). Chọn ngẫu nhiên \(2\) điểm trong \(T\). Biết xác suất để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) bằng \(\frac{1}{a}\). Tính \({a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

196

Đáp án: 196.

Trong mặt phẳng tọa độ \(Oxy,\) cho đường tr (ảnh 1)

Để từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\), suy ra \(OM > 1\).

Dễ thấy \(\widehat {AMO} = \widehat {BMO} = \frac{{\widehat {AMB}}}{2} \Rightarrow \widehat {AMB} \ge 60^\circ  \Leftrightarrow \widehat {AMO} \ge 30^\circ \).

Trong \(\Delta AMO\) vuông tại \(A\):

\(30^\circ  \le \widehat {AMO} < 90^\circ  \Rightarrow \sin 30^\circ  \le \sin AMO < \sin 90^\circ  \Leftrightarrow \frac{1}{2} \le \frac{{OA}}{{OM}} < 1 \Rightarrow 1 < OM \le 2\).

Do đó: \(1 < \sqrt {{x^2} + {y^2}}  \le 2 \Rightarrow 1 < {x^2} + {y^2} \le 4\). Do \(x,y \in \mathbb{Z}\) nên có hai trường hợp:

·       \({x^2} + {y^2} = 2\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {1;1} \right);\left( { - 1;1} \right);\left( {1; - 1} \right);\left( { - 1; - 1} \right)} \right\}\).

·       \({x^2} + {y^2} = 4\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {2;0} \right);\left( { - 2;0} \right);\left( {0;2} \right);\left( {0; - 2} \right)} \right\}\).

Vậy có \(8\) điểm \(M\) thỏa mãn hay số phần tử của \(T\) là \(8\).

Số cách chọn ngẫu nhiên \(2\) điểm trong \(T\): \(C_8^2 = 28\).

Để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) có \(2\) trường hợp thỏa mãn: \(\left( {1;1} \right)\) và \(\left( { - 1;1} \right)\); \(\left( {1; - 1} \right)\) và \(\left( { - 1; - 1} \right)\).

Vậy xác suất cần tìm: \(P = \frac{2}{{28}} = \frac{1}{{14}} \Rightarrow \frac{1}{a} = \frac{1}{{14}} \Rightarrow a = 14 \Rightarrow {a^2} = 196\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 1,65.

Đặt \(\widehat {CAB} = \varphi \left( {rad} \right)\), \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 2)

Ta có \(\Delta ABC\) vuông tại \(C\) \( \Rightarrow AC = AB.\cos \varphi  = 0,1\cos \varphi \).

Mà \(\widehat {COR} = 2\widehat {CAB} = 2\varphi \).

Độ dài cung tròn .

Tổng thời gian người này di chuyển từ \(A\) đến \(C\) và đến B là:  với \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

\( \Rightarrow t'\left( \varphi  \right) =  - \frac{1}{{50}}\sin \varphi  + \frac{1}{{60}} = 0 \Leftrightarrow \sin \varphi  = \frac{5}{6} \Rightarrow \varphi  \approx 0,985\) rad.

Bảng biến thiên

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 3)

Vậy thời gian tối đa để di chuyển từ \(A\) đến \(C\)và đến B là \(t\left( {0,985} \right) = 0,027\)(giờ)\( \simeq 1,65\)phút.

Câu 2

a) [NB] Giả sử \(\overrightarrow {A'M} = x.\overrightarrow {AB} + y.\overrightarrow {AC} + z.\overrightarrow {AA'} \) thì \(x + y = z\).
Đúng
Sai
b) [TH] \(\overrightarrow {NB} = - 2\overrightarrow {NB'} \).
Đúng
Sai
c) [TH] \(\overrightarrow {AB} + \overrightarrow {CC'} = \overrightarrow {AB'} \).
Đúng
Sai
d) [VD,VDC] \(\overrightarrow {A'M} .\overrightarrow {C'N} = \frac{{4{a^2}}}{3}\).
Đúng
Sai

Lời giải

a) Sai.

Ta có: \(\overrightarrow {A'M}  = \frac{1}{2}\left( {\overrightarrow {A'B}  + \overrightarrow {A'C} } \right)\)\( = \frac{1}{2}\left( {\overrightarrow {A'A}  + \overrightarrow {A'B'}  + \overrightarrow {A'A}  + \overrightarrow {A'C'} } \right) = \overrightarrow {A'A}  + \frac{1}{2}\overrightarrow {A'B'}  + \frac{1}{2}\overrightarrow {A'C'} \)\( = \frac{1}{2}.\overrightarrow {AB}  + \frac{1}{2}.\overrightarrow {AC}  - \overrightarrow {AA'} \). Suy ra \(x = y = \frac{1}{2};z =  - 1 \Rightarrow x + y =  - z\).

b) Đúng.

Ta có: \(\overrightarrow {BN}  = \frac{2}{3}\overrightarrow {BB'}  \Leftrightarrow \overrightarrow {BN}  = \frac{2}{3}\left( {\overrightarrow {BN}  + \overrightarrow {NB'} } \right) \Leftrightarrow \overrightarrow {BN}  = 2\overrightarrow {NB'}  \Leftrightarrow \overrightarrow {NB}  =  - 2\overrightarrow {NB'} \).

c) Đúng.

Ta có: \(\overrightarrow {AB}  + \overrightarrow {CC'}  = \overrightarrow {AB}  + \overrightarrow {BB'}  = \overrightarrow {AB'} \).

d) Đúng.

Ta có:\(\overrightarrow {C'N}  = \overrightarrow {C'B'}  + \overrightarrow {B'N}  = \overrightarrow {A'B'}  - \overrightarrow {A'C'}  + \frac{1}{3}\overrightarrow {B'B}  = \overrightarrow {AB}  - \overrightarrow {AC}  - \frac{1}{3}\overrightarrow {AA'} \)\( \Rightarrow \overrightarrow {A'M} .\overrightarrow {C'N}  = \left( {\frac{1}{2}.\overrightarrow {AB}  + \frac{1}{2}.\overrightarrow {AC}  - \overrightarrow {AA'} } \right).\left( {\overrightarrow {AB}  - \overrightarrow {AC}  - \frac{1}{3}\overrightarrow {AA'} } \right)\)\( = \frac{1}{2}A{B^2} - \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AC}  - \frac{1}{6}\overrightarrow {AB} .\overrightarrow {AA'}  + \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB}  - \frac{1}{2}A{C^2} - \frac{1}{6}\overrightarrow {AC} .\overrightarrow {AA'}  - \overrightarrow {AA'} .\overrightarrow {AB}  + \overrightarrow {AA'} .\overrightarrow {AC}  + \frac{1}{3}A{A'^2}\)

\( = \frac{1}{2}A{B^2} - \frac{1}{2}A{C^2} + \frac{1}{3}A{A'^2} - \frac{7}{6}\overrightarrow {AB} .\overrightarrow {AA'}  + \frac{5}{6}\overrightarrow {AC} .\overrightarrow {AA'} \)

\( =  = \frac{1}{2}{a^2} - \frac{1}{2}{a^2} + \frac{1}{3}{a^2} - \frac{7}{6}\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AA'} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AA'} } \right) + \frac{5}{6}\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {AA'} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {AA'} } \right)\)

\( = \frac{1}{3}{a^2} - \frac{7}{6}{a^2}.\cos \widehat {A'AB} + \frac{5}{6}{a^2}.\cos \widehat {A'AC} = \frac{1}{3}{a^2} - \frac{7}{6}{a^2}.\cos 120^\circ  + \frac{5}{6}{a^2}.\cos 60^\circ \)

\( = \frac{4}{3}{a^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) [TH] Phương trình đường tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
Đúng
Sai
b) [TH] Điểm cực tiểu của đồ thị hàm số là \(T\left( {2;4} \right)\).
Đúng
Sai
c) [TH] Hàm số đồng biến trên \(\left( {1; + \infty } \right)\).
Đúng
Sai
d) [VD] Gọi \[A,\,B\] là hai điểm di động trên đồ thị hàm số sao cho các tiếp tuyến của đồ thị hàm số tại \(A\)\(B\) luôn song song với nhau. Khi khoảng cách từ điểm \(M\left( {4;1} \right)\) đến đường thẳng \(AB\) lớn nhất thì độ dài đoạn thẳng \(AB\) bằng \(2\sqrt 5 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP