Trong mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( C \right)\) tâm \(O\), bán kính bằng \(1\). Gọi \(T\) là tập hợp tất cả các điểm \(M\left( {x;y} \right)\), trong đó \(x,y \in \mathbb{Z}\), sao cho từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\) (\(A\), \(B\) là các tiếp điểm) thỏa mãn \(\widehat {AMB} \ge 60^\circ \). Chọn ngẫu nhiên \(2\) điểm trong \(T\). Biết xác suất để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) bằng \(\frac{1}{a}\). Tính \({a^2}\).
Trong mặt phẳng tọa độ \(Oxy,\) cho đường tròn \(\left( C \right)\) tâm \(O\), bán kính bằng \(1\). Gọi \(T\) là tập hợp tất cả các điểm \(M\left( {x;y} \right)\), trong đó \(x,y \in \mathbb{Z}\), sao cho từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\) (\(A\), \(B\) là các tiếp điểm) thỏa mãn \(\widehat {AMB} \ge 60^\circ \). Chọn ngẫu nhiên \(2\) điểm trong \(T\). Biết xác suất để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) bằng \(\frac{1}{a}\). Tính \({a^2}\).
Quảng cáo
Trả lời:
Đáp án:
Đáp án: 196.

Để từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\), suy ra \(OM > 1\).
Dễ thấy \(\widehat {AMO} = \widehat {BMO} = \frac{{\widehat {AMB}}}{2} \Rightarrow \widehat {AMB} \ge 60^\circ \Leftrightarrow \widehat {AMO} \ge 30^\circ \).
Trong \(\Delta AMO\) vuông tại \(A\):
\(30^\circ \le \widehat {AMO} < 90^\circ \Rightarrow \sin 30^\circ \le \sin AMO < \sin 90^\circ \Leftrightarrow \frac{1}{2} \le \frac{{OA}}{{OM}} < 1 \Rightarrow 1 < OM \le 2\).
Do đó: \(1 < \sqrt {{x^2} + {y^2}} \le 2 \Rightarrow 1 < {x^2} + {y^2} \le 4\). Do \(x,y \in \mathbb{Z}\) nên có hai trường hợp:
· \({x^2} + {y^2} = 2\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {1;1} \right);\left( { - 1;1} \right);\left( {1; - 1} \right);\left( { - 1; - 1} \right)} \right\}\).
· \({x^2} + {y^2} = 4\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {2;0} \right);\left( { - 2;0} \right);\left( {0;2} \right);\left( {0; - 2} \right)} \right\}\).
Vậy có \(8\) điểm \(M\) thỏa mãn hay số phần tử của \(T\) là \(8\).
Số cách chọn ngẫu nhiên \(2\) điểm trong \(T\): \(C_8^2 = 28\).
Để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) có \(2\) trường hợp thỏa mãn: \(\left( {1;1} \right)\) và \(\left( { - 1;1} \right)\); \(\left( {1; - 1} \right)\) và \(\left( { - 1; - 1} \right)\).
Vậy xác suất cần tìm: \(P = \frac{2}{{28}} = \frac{1}{{14}} \Rightarrow \frac{1}{a} = \frac{1}{{14}} \Rightarrow a = 14 \Rightarrow {a^2} = 196\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đáp án: \(1,45\).
Gọi \(I\) là trung điểm \(CD\).
Ta có \(\Delta ACD\) là tam giác đều nên \(AI \bot CD\), \(\Delta BCD\) là tam giác cân tại \(B\) nên \(BI \bot CD\).
Do đó \(CD \bot \left( {ABI} \right)\).
Trong tam giác \(\Delta ABI\) kẻ \(IO\) vuông góc \(AB\).
Khi đó \(d\left( {AB,CD} \right) = IO\).
Xét \(\Delta ACD\) là tam giác đều cạnh \(2\sqrt 3 \) nên \(AI = 3\).
Xét \(\Delta BCI\) vuông tại \(I\) có \(BI = \sqrt {B{C^2} - C{I^2}} = \sqrt {7 - 3} = 2\).
Diện tích tam giác \({S_{\Delta ABI}} = \sqrt {p\left( {p - AB} \right)\left( {p - AI} \right)\left( {p - BI} \right)} = \sqrt {\frac{9}{2}\left( {\frac{9}{2} - 4} \right)\left( {\frac{9}{2} - 3} \right)\left( {\frac{9}{2} - 2} \right)} = \frac{{3\sqrt {15} }}{4}\)
Khi đó \({S_{\Delta ABI}} = \frac{1}{2}OI.AB \Leftrightarrow OI = \frac{{2{S_{\Delta ABI}}}}{{AB}} = \frac{{3\sqrt {15} }}{8}\).
Lời giải
Gọi \(I\) là điểm phát sáng; \(M\) là trung điểm của \(EF;N = SM \cap GH;K = OM \cap G'H'.\)
Ta có \(GH\) là đường trung bình của tam giác \(SEF\) nên
Gọi \(P,Q\) lần lượt là trung điểm của \(SO,OM.\) Theo đề bài ta có
\(SI = 1{\rm{m,}}IO = 2{\rm{m,}}SP = \frac{1}{2}SO = \frac{3}{2}{\rm{m}} \Rightarrow IP = \frac{1}{2};NP = OQ = 2{\rm{m}}\) (vì \(M\) là trung điểm của \(EF\) nên \(N\) là trung điểm của \(GH,SM)\)
Xét tam giác \(IOK\) có
Mà \(OM = 4\) nên \(M\) là trung điểm của \(OK\) và nên \(EF\) là đường trung bình của tam giác \(OG'H' \Rightarrow G'H' = 2EF = 2(AB - AE - FB) = 8{\rm{ m}}{\rm{.}}\)
Do \(M\) là trung điểm của \(EF\), cũng là trung điểm của \(AB\) nên \(OM \bot EF.\) Suy ra \(MK\) là đường cao của hình thang \(EFG'H'\) và \(MK = OM = 4{\rm{ m}}{\rm{.}}\)
Vậy \({S_{EFG'H'}} = \frac{{EF + G'H'}}{2}.MK = \frac{{4 + 8}}{2}.4 = 24{\rm{ }}{{\rm{m}}^2}.\)
Cách khác

Gọi \(I\) là điểm phát sáng; \(M\) là trung điểm của \(EF\) cũng là trung điểm của \(AB({\rm{v\`i }}AE = FB);J\) là trung điểm của \(BC\) (hình vẽ).
Chọn hệ trục tọa độ \(Oxyz\) sao cho tia \(OM \equiv Ox,ON \equiv Oy,OS \equiv Oz.\) Khi đó
\(O(0;0;0),M(4;0;0),J(0;4;0),S(0;0;3);A(4; - 4;0);B(4;4;0);E(4; - 2;0),F(4;2;0),I(0;0;2).\)
\(H\) là trung điểm \(SE \Rightarrow H\left( {2; - 1;\frac{3}{2}} \right)\); \(G\)là trung điểm của \(SF \Rightarrow G\left( {2;1;\frac{3}{2}} \right).\)
\({\rm{Mp}}(ABCD) \equiv Oxy:z = 0.\)
\(\overrightarrow {IH} = \left( {2; - 1; - \frac{1}{2}} \right) = \frac{1}{2}(4; - 2; - 1) \Rightarrow IH:\left\{ \begin{array}{l}x = 4t\\y = - 2t\\z = 2 - t\end{array} \right. \Rightarrow H' = IH \cap Oxy \Rightarrow H'(8; - 4;0)\)
\(\overrightarrow {IG} = \left( {2;1; - \frac{1}{2}} \right) = \frac{1}{2}(4;2; - 1) \Rightarrow IG:\left\{ \begin{array}{l}x = 4t'\\y = 2t'\\z = 2 - t'\end{array} \right. \Rightarrow G = IG \cap Oxy \Rightarrow G(8;4;0)\)
\(\overrightarrow {EH'} = (4; - 2;0),\overrightarrow {EG'} = (4;6;0),\overrightarrow {EF} = (0;4;0)\)
Vậy
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


