Câu hỏi:

29/12/2025 6 Lưu

Một bể bơi hình bán nguyệt có đường kính là \(AB = 100\,{\rm{m}}\). Một người muốn bơi từ vị trí \(A\) đến vị trí \(C\) theo phương thẳng rồi lên bờ đi bộ từ \(C\) đến \(B\). Biết rằng vận tốc bơi là \(5\,{\rm{km/h}}\) và vận tốc đi bộ là \(6\,{\rm{km/h}}\). Hỏi thời gian tối đa để người đó hoàn thành lộ trình như trên là bao nhiêu phút? (Làm tròn kết quả đến hàng phần trăm).

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 1,65.

Đặt \(\widehat {CAB} = \varphi \left( {rad} \right)\), \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 2)

Ta có \(\Delta ABC\) vuông tại \(C\) \( \Rightarrow AC = AB.\cos \varphi  = 0,1\cos \varphi \).

Mà \(\widehat {COR} = 2\widehat {CAB} = 2\varphi \).

Độ dài cung tròn .

Tổng thời gian người này di chuyển từ \(A\) đến \(C\) và đến B là:  với \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

\( \Rightarrow t'\left( \varphi  \right) =  - \frac{1}{{50}}\sin \varphi  + \frac{1}{{60}} = 0 \Leftrightarrow \sin \varphi  = \frac{5}{6} \Rightarrow \varphi  \approx 0,985\) rad.

Bảng biến thiên

Một bể bơi hình bán nguyệt có đường kính là \(AB (ảnh 3)

Vậy thời gian tối đa để di chuyển từ \(A\) đến \(C\)và đến B là \(t\left( {0,985} \right) = 0,027\)(giờ)\( \simeq 1,65\)phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 196.

Trong mặt phẳng tọa độ \(Oxy,\) cho đường tr (ảnh 1)

Để từ \(M\) kẻ được \(2\) tiếp tuyến \(MA\), \(MB\) đến \(\left( C \right)\), suy ra \(OM > 1\).

Dễ thấy \(\widehat {AMO} = \widehat {BMO} = \frac{{\widehat {AMB}}}{2} \Rightarrow \widehat {AMB} \ge 60^\circ  \Leftrightarrow \widehat {AMO} \ge 30^\circ \).

Trong \(\Delta AMO\) vuông tại \(A\):

\(30^\circ  \le \widehat {AMO} < 90^\circ  \Rightarrow \sin 30^\circ  \le \sin AMO < \sin 90^\circ  \Leftrightarrow \frac{1}{2} \le \frac{{OA}}{{OM}} < 1 \Rightarrow 1 < OM \le 2\).

Do đó: \(1 < \sqrt {{x^2} + {y^2}}  \le 2 \Rightarrow 1 < {x^2} + {y^2} \le 4\). Do \(x,y \in \mathbb{Z}\) nên có hai trường hợp:

·       \({x^2} + {y^2} = 2\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {1;1} \right);\left( { - 1;1} \right);\left( {1; - 1} \right);\left( { - 1; - 1} \right)} \right\}\).

·       \({x^2} + {y^2} = 4\): Có \(4\) điểm \(\left( {x;y} \right) \in \left\{ {\left( {2;0} \right);\left( { - 2;0} \right);\left( {0;2} \right);\left( {0; - 2} \right)} \right\}\).

Vậy có \(8\) điểm \(M\) thỏa mãn hay số phần tử của \(T\) là \(8\).

Số cách chọn ngẫu nhiên \(2\) điểm trong \(T\): \(C_8^2 = 28\).

Để đường thẳng đi qua \(2\) điểm được chọn song song với trục \(Ox\) có \(2\) trường hợp thỏa mãn: \(\left( {1;1} \right)\) và \(\left( { - 1;1} \right)\); \(\left( {1; - 1} \right)\) và \(\left( { - 1; - 1} \right)\).

Vậy xác suất cần tìm: \(P = \frac{2}{{28}} = \frac{1}{{14}} \Rightarrow \frac{1}{a} = \frac{1}{{14}} \Rightarrow a = 14 \Rightarrow {a^2} = 196\).

Lời giải

Cho tứ diện \(ABCD\) có \(AB = 4,\,AC = (ảnh 1)

Đáp án: \(1,45\).

Gọi \(I\) là trung điểm \(CD\).

Ta có \(\Delta ACD\) là tam giác đều nên \(AI \bot CD\), \(\Delta BCD\) là tam giác cân tại  \(B\) nên \(BI \bot CD\).

Do đó \(CD \bot \left( {ABI} \right)\).

Trong tam giác \(\Delta ABI\) kẻ \(IO\) vuông góc \(AB\).

Khi đó \(d\left( {AB,CD} \right) = IO\).

Xét \(\Delta ACD\) là tam giác đều cạnh \(2\sqrt 3 \) nên \(AI = 3\).

Xét \(\Delta BCI\) vuông tại \(I\) có \(BI = \sqrt {B{C^2} - C{I^2}}  = \sqrt {7 - 3}  = 2\).

Diện tích tam giác \({S_{\Delta ABI}} = \sqrt {p\left( {p - AB} \right)\left( {p - AI} \right)\left( {p - BI} \right)}  = \sqrt {\frac{9}{2}\left( {\frac{9}{2} - 4} \right)\left( {\frac{9}{2} - 3} \right)\left( {\frac{9}{2} - 2} \right)}  = \frac{{3\sqrt {15} }}{4}\)

Khi đó \({S_{\Delta ABI}} = \frac{1}{2}OI.AB \Leftrightarrow OI = \frac{{2{S_{\Delta ABI}}}}{{AB}} = \frac{{3\sqrt {15} }}{8}\).

Câu 4

a) [TH] Phương trình đường tiệm cận xiên của đồ thị hàm số là \(y = x + 1\).
Đúng
Sai
b) [TH] Điểm cực tiểu của đồ thị hàm số là \(T\left( {2;4} \right)\).
Đúng
Sai
c) [TH] Hàm số đồng biến trên \(\left( {1; + \infty } \right)\).
Đúng
Sai
d) [VD] Gọi \[A,\,B\] là hai điểm di động trên đồ thị hàm số sao cho các tiếp tuyến của đồ thị hàm số tại \(A\)\(B\) luôn song song với nhau. Khi khoảng cách từ điểm \(M\left( {4;1} \right)\) đến đường thẳng \(AB\) lớn nhất thì độ dài đoạn thẳng \(AB\) bằng \(2\sqrt 5 \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 0.                                    
B. 2.                                     
C. −2.                                       
D. 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(y = \frac{{{x^2} - 2x}}{{x - 1}}\). 
B. \(y = \frac{{{x^2} + 2x}}{{x - 1}}\).              
C. \(y = \frac{{ - {x^2} + 2x}}{{x - 1}}\).          
D. \(y = \frac{{x + 2}}{{x - 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP