Câu hỏi:

29/12/2025 885 Lưu

Một công ty sản xuất mỹ phẩm ước tính chi phí để sản xuất \[x\] (sản phẩm) là

\[C\left( x \right) = 300x + 50\] (nghìn đồng).

Khi đó \[f\left( x \right) = \frac{{C\left( x \right)}}{x}\] là chi phí sản xuất trung bình cho mỗi sản phẩm. Hỏi chi phí sản xuất trung bình cho mỗi sản phẩm không thấp hơn bao nhiêu nghìn đồng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

300

Đáp án:  300.

Ta có: \[f\left( x \right) = \frac{{300x + 50}}{x},x \in {\mathbb{N}^*} \Leftrightarrow f\left( x \right) = 300 + \frac{{50}}{x}\].

Thấy \(f'\left( x \right) = - \frac{{50}}{{{x^2}}} < 0,\forall x \ne 0 \Rightarrow \) Hàm số \[f\left( x \right)\] luôn nghịch biến (giảm) trên mỗi khoảng xác định. Do đó chi phí sản xuất trung bình cho mỗi sản phẩm sẽ giảm khi số lượng sản phẩm tăng.

Ta có: \[\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {300 + \frac{{50}}{x}} \right) = \mathop {\lim }\limits_{x \to + \infty } 300 + \mathop {\lim }\limits_{x \to + \infty } \frac{{50}}{x} = 300\].

Do đó chi phí sản xuất trung bình cho mỗi sản phẩm không thấp hơn 300 (nghìn đồng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Một đại lý vật liệu cần thuê xe chở 140 tấn xi măng và 9 tấn thép tới công trình xây dựng. Nơi thuê có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. Mỗi xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4,5 triệu đồng. Biết rằng mỗi xe loại A chở tối đa 20 tấn xi măng và 0,6 tấn thép, mỗi xe loại B có thể chở tối đa 10 tấn xi măng và 1,5 tấn thép. Để số tiền thuê xe ít nhất đại lý đã thuê \[x\] chiếc xe loại A và \[y\] chiếc xe loại \(B.\) Tính \[2x + y\]

Lời giải

Đáp số: 9.

Gọi \(x,y\)lần lượt là số xe loại A và B mà đại lý cần thuê. ĐK \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 9\end{array} \right.\)

Một đại lý vật liệu cần thuê xe chở 140 tấn xi măng và 9 tấn thép tới công trình xây dựng. Nơi thuê có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc.  (ảnh 1)

Từ đề bài ta có: \(\left\{ \begin{array}{l}20{\rm{x}} + 10y \ge 140\\0,6{\rm{x}} + 1,5y \ge 9\end{array} \right.\).

Khi đó, số tiền thuê xe là: \(T = 5x + 4,5y\).

Miền nghiệm \(\left( {x,y} \right)\)là tứ giác \(ABC{\rm{D}}\) với \(A(\frac{5}{2};9),\,\,\,B(5;4),\,\,C(10;2),\,\,D(10;9).\)

Tại đỉnh \(B\)thì \(T = 43\) đạt giá trị nhỏ nhất nên \(x = 5,y = 4 \Rightarrow 2x + y = 14.\)

Lời giải

Đáp án: 1

Tọa độ hai điểm cực trị của đồ thị hàm số \(y = {x^3} - 3x\) là \(\left( { - 1;2} \right);\left( {1; - 2} \right)\)

Phương trình đường thẳng đi qua 2 điểm cực trị \(2x + y = 0\)(d)

Hai điểm A, B nằm cùng phía đối với d . Gọi \(A'\) là điểm đối xứng với A qua d.

Khi đó \[MA{\rm{ }} + {\rm{ }}MB = MA'{\rm{ }} + {\rm{ }}MB \ge A'B\].

Do đó \[MA{\rm{ }} + {\rm{ }}MB\] ngắn nhất thì \(M,A',B\)thẳng hàng hay \(M = A'B \cap d\).

\(\Delta \) là đường thẳng đi qua A và vuông góc d

PT \(\Delta \) \(\left( {x - 1} \right) - 2\left( {y - 2} \right) = 0\)\( \Leftrightarrow x - 2y + 3 = 0\)

Gọi I là giao điểm của d và \(\Delta \)\( \Rightarrow I\left( { - \frac{3}{5};\frac{6}{5}} \right)\)\( \Rightarrow A'\left( { - \frac{{11}}{5};\frac{2}{5}} \right)\).

\(\overrightarrow {A'B}  = \left( {\frac{{21}}{5};\frac{3}{5}} \right) \Rightarrow \)VTPT của \(A'B\)là \(\overrightarrow n \left( {3; - 21} \right)\)

PT \(A'B\):\(3\left( {x - 2} \right) - 21\left( {y - 1} \right) = 0\)  \( \Leftrightarrow 3x - 21y + 15 = 0\)

\(M = A'B \cap d \Rightarrow M\left( { - \frac{1}{3};\frac{2}{3}} \right)\)nên \(a =  - \frac{1}{3};b = \frac{2}{3}\)

Khi đó \(b - a = \frac{2}{3} - \left( { - \frac{1}{3}} \right) = 1\).

Câu 4

Trong một buổi cắm trại bên bờ hồ, các đội thi đua chạy từ lều chỉ huy A cách bờ hồ 20 m đến hồ lấy nước và mang về lều chỉ huy B cách bờ hồ 50 m.

Trong một buổi cắm trại bên bờ hồ, các đội thi đua chạy từ lều chỉ huy A cách bờ hồ 20 m đến hồ lấy nước và mang về lều chỉ huy B cách bờ hồ 50 m. (ảnh 1)

Hai lều chỉ huy A và B cách nhau 50 m. Đoạn đường đi ngắn nhất mỗi lượt các đội có thể đi là bao nhiêu mét (kết quả làm tròn đến hàng phần mười)?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{10}}{3}\;cm\).                                         
B. 10 cm.      
C. \(\frac{{20}}{3}\;cm\).                                         
D. 20 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Đạo hàm của hàm số \(f'\left( x \right) < 0,\,\,\forall x \in \mathbb{R}\).
Đúng
Sai
b) Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {1; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;1} \right)\).
Đúng
Sai
c) Đồ thị hàm số \(y = f\left( x \right)\) có đường tiệm cận đứng là \(x = 1\) và đường tiệm cận ngang là \(y = - 1\).
Đúng
Sai
d) Tổng \(a + b + c = 5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP