Câu hỏi:

30/12/2025 106 Lưu

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy, \(SA = a\sqrt 2 \), \(AB = a\), \(BC = 2a\). Chứng minh tam giác \(\Delta SBC\) vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy, SA = a căn bậc hai 2 , AB = a, BC = 2a. Chứng minh tam giác Delta SBC vuông. (ảnh 1)

Ta có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)

Mà \(AB \bot BC\) và trong \(\left( {SAB} \right)\): \(SA \cap AB = A\) nên \(BC \bot \left( {SAB} \right)\).

\( \Rightarrow BC \bot SB\).

Vậy tam giác \(SBC\) vuông tại \(B\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi biến cố \(D\): “Có ít nhất một lần bắn trúng đích ”.

    biến cố \(\overline D \): “Cả hai lần bắn đều không trúng đích”.

\( \Rightarrow P\left( {\overline D } \right) = 0,2.0,3 = 0,06.\)

\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 0,94.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

\({\log _a}\left( {{b^3}{c^4}} \right) = 3{\log _a}b + 4{\log _a}c = 3.3 + 4.\left( { - 4} \right) =  - 7\).

Câu 3

A. \[I = \frac{1}{2}\].
B. \[I = 0\].
C. \[I =  - 2\].
D. \[I = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = {\log _2}x\).   
B. \(y = {2^x}\).     
C. \(y = {\left( {\frac{1}{2}} \right)^x}\). 
D. \(y = {\log _{\frac{1}{2}}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[90^\circ .\]  
B. \[45^\circ .\]  
C. \[60^\circ .\]  
D. \[30^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP