Câu hỏi:

30/12/2025 2 Lưu

Gọi \[A\] và \(B\) là hai biến cố liên quan đến phép thử ngẫu nhiên \(T\). Cho \(P\left( A \right) = \frac{1}{4},P\left( {A \cup B} \right) = \frac{1}{2}\). Biết \(A,B\)là hai biến cố xung khắc, thì \(P\left( B \right)\) bằng

A. \[\frac{3}{4}\].  
B. \[\frac{1}{8}\].  
C. \[\frac{1}{3}\].  
D. \[\frac{1}{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Vì \(A\), \(B\) là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)

\( \Rightarrow P\left( B \right) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( {SAC} \right) \bot \left( {SBD} \right)\). 
B. \(SH \bot \left( {ABCD} \right)\).
C. \(\left( {SBD} \right) \bot \left( {ABCD} \right)\). 
D. \(CD \bot \left( {SAD} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABCD đều. Gọi H là trung điểm cạnh AC. Tìm mệnh đề sai? (ảnh 1)

Vì \(S.ABCD\) là hình chóp đều nên \(SH \bot \left( {ABCD} \right)\).

Vì \(ABCD\)là hình vuông nên \(AC \bot BD\) mà \(SH \bot AC\left( {SH \bot \left( {ABCD} \right)} \right)\) nên \(AC \bot \left( {SBD} \right) \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\) và \(\left( {SBD} \right) \bot \left( {ABCD} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và alpha là góc tạo bởi đường thẳng MC' và mặt phẳng (ABC). Khi đó tan alpha . (ảnh 1)

Do \(CC' \bot \left( {ABC} \right)\) nên suy ra \(MC\) là hình chiếu của \(MC'\) lên \(\left( {ABC} \right)\). Khi đó: \(\left( {MC',\left( {ABC} \right)} \right) = \left( {MC',MC} \right) = \widehat {C'MC} = \alpha \).

Vì \(\Delta ABC\) đều cạnh \(a\), đường cao \(CM = \frac{{a\sqrt 3 }}{2}\).

Xét tam giác \(MCC'\) vuông tại \(C\) có: \(\tan \alpha  = \frac{{CC'}}{{CM}} = \frac{a}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{2\sqrt 3 }}{3}\).

Câu 3

A. \[y = {x^5} \Rightarrow y' = 5x\].
B. \[y = {x^3} \Rightarrow y' = 3{x^2}\].  
C. \[y = x \Rightarrow y' = 1\]. 
D. \[y = {x^4} \Rightarrow y' = 4{x^3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(A'C' \bot BB'\). 
B. \(A'C' \bot BD\).
C. \(A'C'//AC\). 
D. \(A'C' \bot DD'\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP