Cho hình chóp \[S.ABC\] có \[SA \bot \left( {ABC} \right)\], \[SA = AB = 2a\], tam giác \[ABC\]vuông tại \[B\] (tham khảo hình vẽ). Khoảng cách từ \[A\] đến mặt phẳng \[\left( {SBC} \right)\] bằng

Cho hình chóp \[S.ABC\] có \[SA \bot \left( {ABC} \right)\], \[SA = AB = 2a\], tam giác \[ABC\]vuông tại \[B\] (tham khảo hình vẽ). Khoảng cách từ \[A\] đến mặt phẳng \[\left( {SBC} \right)\] bằng

Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Gọi \[H\] là trung điểm cạnh \[SB\].
Do \(SA = AB\) nên \(\Delta SAB\) cân tại \(A\) mà \[H\] là trung điểm cạnh \[SB\] nên \(AH \bot SB.\)
Có \(BC \bot AB\) và \(BC \bot SA\left( {SA \bot \left( {ABC} \right)} \right) \Rightarrow BC \bot \left( {SAB} \right)\).
\[\left\{ \begin{array}{l}AH \bot BC\left( {BC \bot \left( {SAB} \right)} \right)\\AH \bot SB\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right)\].
Vì \(\Delta SAB\) vuông cân tại \(A\)\( \Rightarrow AH = \frac{{SB}}{2} = \frac{{\sqrt {S{A^2} + A{B^2}} }}{2} = \frac{{2a\sqrt 2 }}{2} = a\sqrt 2 \).
Do đó khoảng cách từ \[A\] đến mặt phẳng \[\left( {SBC} \right)\] là \[AH = \frac{{SB}}{2} = \frac{{2a\sqrt 2 }}{2} = a\sqrt 2 \].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì \(ABCD.A'B'C'D'\)là hình hộp chữ nhật nên \[\left( {AA'B'B} \right) \bot (ABCD)\].
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Gọi A là biến cố: “Người thứ nhất bắn trúng vào bia”.
B là biến cố : “Người thứ hai bắn trúng vào bia”.
Khi đó \(P\left( A \right) = 0,6;P\left( B \right) = 0,7\).
Gọi C là biến cố: “Cả hai người không bắn trúng mục tiêu”.
Khi đó \(C = \overline A \overline B \).
Vì \(\overline A ,\overline B \) là hai biến cố độc lập nên
\(P\left( C \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = \left( {1 - P\left( A \right)} \right)\left( {1 - P\left( B \right)} \right) = 0,4.0,3 = \frac{3}{{25}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
