Tìm số hạng không chứa \[x\] trong khai triển của biểu thức \[{\left( {x - \frac{1}{x}} \right)^{\frac{{n - 7}}{2}}}\] biết \[x \ne 0\] và \[n \in {\mathbb{Z}^ + }\] thỏa mãn \[A_n^2 - C_n^2 = 105\].
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Ta có: \[A_n^2 - C_n^2 = 105\] (điều kiện \(n \ge 2\))
\[ \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} - \frac{{n!}}{{2!\left( {n - 2} \right)!}} = 105\]
\[ \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} - \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{2!\left( {n - 2} \right)!}} = 105\]
\[ \Leftrightarrow n\left( {n - 1} \right) - \frac{1}{2}n\left( {n - 1} \right) = 105\]
\[ \Leftrightarrow \frac{1}{2}n\left( {n - 1} \right) = 105\]
\[ \Leftrightarrow {n^2} - n - 210 = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}n = - 14\\n = 15\,\,\,\,\,\left( {tm} \right)\end{array} \right.\]
Thay \[n = 15\] vào biểu thức, ta được:
\[{\left( {x - \frac{1}{x}} \right)^{\frac{{15 - 7}}{2}}} = {\left( {x - \frac{1}{x}} \right)^4} = C_4^0.{x^4} + C_4^1.{x^3}.\left( { - \frac{1}{x}} \right) + C_4^2.{x^2}.{\left( { - \frac{1}{x}} \right)^2} + C_4^3.x.{\left( { - \frac{1}{x}} \right)^3} + C_4^4.{\left( { - \frac{1}{x}} \right)^4}\]
Do đó, \[{\left( {x - \frac{1}{x}} \right)^4} = {x^4} - 4{x^2} + 6 - \frac{4}{{{x^2}}} + \frac{1}{{{x^4}}}\].
Vậy số hạng không chứa \[x\] trong khai triển của biểu thức đã cho là 6.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hình chiếu vuông góc của \(M\) trên trục hoành là \(H\left( {1;\,0} \right)\);
B. Điểm đối xứng với \(M\) qua gốc tọa độ là \(P\left( {3; - 1} \right)\);
C. Điểm đối xứng với \(M\)qua trục hoành là \(N\left( {1;3} \right)\);
Lời giải
Đáp án đúng là: B
Trong mặt phẳng tọa độ \[Oxy\]:
+ Hình chiếu vuông góc của \(M\) trên trục hoành là \(H\left( {1;\,0} \right)\). Đáp án A đúng.
+ Điểm đối xứng với \(M\) qua gốc tọa độ là \(P\left( { - 1;\,3} \right)\). Đáp án B sai.
+ Điểm đối xứng với \(M\) qua trục hoành là \(N\left( {1;3} \right)\). Đáp án C đúng.
+ Hình chiếu vuông góc của \(M\) trên trục tung là \(K\left( {0; - 3} \right)\). Đáp án D đúng.
Câu 2
Lời giải
Đáp án đúng là: C
Số cách lập danh sách gồm 5 cầu thủ đá 5 quả 11 mét là số các chỉnh hợp chập 5 của 11 phần tử. Vậy có \(A_{11}^5 = 55\,440\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho 8 bạn học sinh \(A,\,B,\,C,\,D,\,E,\,F,\,G,\,H\). Hỏi có bao nhiêu cách xếp 8 bạn đó ngồi xung quanh một bàn tròn có 8 ghế?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.