Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,1} \right),\,B\left( {0;\,\,2} \right)\). Viết phương trình đường thẳng \(d\) sao cho khoảng cách từ điểm \(A\) tới \(d\) bằng \(\sqrt 8 \), khoảng cách từ điểm \(B\) tới \(d\) bằng \(\sqrt 2 \).
Trong mặt phẳng tọa độ \(Oxy\), cho hai điểm \(A\left( { - 1;\,1} \right),\,B\left( {0;\,\,2} \right)\). Viết phương trình đường thẳng \(d\) sao cho khoảng cách từ điểm \(A\) tới \(d\) bằng \(\sqrt 8 \), khoảng cách từ điểm \(B\) tới \(d\) bằng \(\sqrt 2 \).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Giả sử đường thẳng \(d\) có dạng: \(y = ax + b\,\,\,\,{\rm{hay}}\,\,\,d:ax - y + b = 0\).
Ta có: \(d\left( {A,\,\,d} \right) = \frac{{\left| {a.\left( { - 1} \right) - 1 + b} \right|}}{{\sqrt {{a^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| { - a + b - 1} \right|}}{{\sqrt {{a^2} + 1} }} = \sqrt 8 \). Suy ra \(\frac{{\left| { - a + b - 1} \right|}}{{\sqrt 8 }} = \sqrt {{a^2} + 1} \).
Lại có: \(d\left( {B,\,\,d} \right) = \frac{{\left| {a.0 - 2 + b} \right|}}{{\sqrt {{a^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {b - 2} \right|}}{{\sqrt {{a^2} + 1} }} = \sqrt 2 \). Suy ra \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{a^2} + 1} \) (*).
Do đó, \(\frac{{\left| { - a + b - 1} \right|}}{{\sqrt 8 }} = \frac{{\left| {b - 2} \right|}}{{\sqrt 2 }}\)\( \Leftrightarrow \sqrt 2 \left| { - a + b - 1} \right| = \sqrt 8 \left| {b - 2} \right|\)
\( \Leftrightarrow \sqrt 2 \left| { - a + b - 1} \right| = 2\sqrt 2 \left| {b - 2} \right|\)
\( \Leftrightarrow \left| { - a + b - 1} \right| = 2\left| {b - 2} \right|\)
Trường hợp 1: \( - a + b - 1 = 2\left( {b - 2} \right) \Leftrightarrow a + b - 3 = 0\)\( \Leftrightarrow a = 3 - b\).
Thay \(a = 3 - b\) vào (*) ta được: \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{{\left( {3 - b} \right)}^2} + 1} \Leftrightarrow \left| {b - 2} \right| = \sqrt 2 .\sqrt {{b^2} - 6b + 10} \)
\( \Rightarrow {b^2} - 4b + 4 = 2\left( {{b^2} - 6b + 10} \right)\)\( \Leftrightarrow {b^2} - 8b + 16 = 0 \Leftrightarrow b = 4\).
Suy ra \(a = 3 - 4 = - 1\).
Vậy \(d: - x - y + 4 = 0\,\,\,{\rm{hay}}\,\,d:x + y - 4 = 0\).
Trường hợp 2: \( - a + b - 1 = - 2\left( {b - 2} \right) \Leftrightarrow a - 3b + 5 = 0\)\( \Leftrightarrow a = 3b - 5\).
Thay \(a = 3b - 5\) vào (*) ta được: \(\frac{{\left| {b - 2} \right|}}{{\sqrt 2 }} = \sqrt {{{\left( {3b - 5} \right)}^2} + 1} \Leftrightarrow \left| {b - 2} \right| = \sqrt 2 .\sqrt {9{b^2} - 30b + 26} \)
\( \Rightarrow {b^2} - 4b + 4 = 2\left( {9{b^2} - 30b + 26} \right)\)\( \Leftrightarrow 17{b^2} - 56b + 48 = 0\) (vô nghiệm).
Vậy phương trình đường thẳng \(d\) cần lập có dạng: \(x + y - 4 = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hình chiếu vuông góc của \(M\) trên trục hoành là \(H\left( {1;\,0} \right)\);
B. Điểm đối xứng với \(M\) qua gốc tọa độ là \(P\left( {3; - 1} \right)\);
C. Điểm đối xứng với \(M\)qua trục hoành là \(N\left( {1;3} \right)\);
Lời giải
Đáp án đúng là: B
Trong mặt phẳng tọa độ \[Oxy\]:
+ Hình chiếu vuông góc của \(M\) trên trục hoành là \(H\left( {1;\,0} \right)\). Đáp án A đúng.
+ Điểm đối xứng với \(M\) qua gốc tọa độ là \(P\left( { - 1;\,3} \right)\). Đáp án B sai.
+ Điểm đối xứng với \(M\) qua trục hoành là \(N\left( {1;3} \right)\). Đáp án C đúng.
+ Hình chiếu vuông góc của \(M\) trên trục tung là \(K\left( {0; - 3} \right)\). Đáp án D đúng.
Câu 2
Lời giải
Đáp án đúng là: C
Số cách lập danh sách gồm 5 cầu thủ đá 5 quả 11 mét là số các chỉnh hợp chập 5 của 11 phần tử. Vậy có \(A_{11}^5 = 55\,440\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho 8 bạn học sinh \(A,\,B,\,C,\,D,\,E,\,F,\,G,\,H\). Hỏi có bao nhiêu cách xếp 8 bạn đó ngồi xung quanh một bàn tròn có 8 ghế?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.